SQT1-22912-00

QPAC for Batch

Reference Manual
Version 9 Release 12

First Edition (December 2024)

This edition applies to version 9 release 12 of the Osys Software AG licensed program QPAC for Batch, pro-
gram number 8050-QP-912-T10 and to all subsequent versions, releases and modifications until otherwise indi-
cated in new editions.

Consult Osys Software AG for current information on this product.

Order publications or address your comments to the following address

Osys Software AG
Dammstrasse 19, CH-6300 Zug/Switzerland
E-Mail gpac@osys.ch

© Copyright Osys Software AG 1989-2024. All rights reserved.

I QPAC-Batch Reference Manual

mailto:qpac@osys.ch

Special Notices

The terms listed below are used in this publication and are trademarks or service
marks of the following companies:

Osys Software AG, Switzerland:
Osys-QPAC

International Business Machines:
z/0S
CICS
VSAM
DL/I
DB2
RACF
MQSeries
ISPF/PDF-TSO

Il QPAC-Batch Reference Manual

Contents

Chapter 1. Introduction ... 11
SYSIEM OVEIVIEW ...ttt e e e e e e e e e e 1-1
PUrpose of QPAC ... a e 1-2
POSSIDIILIES . .eeeet i 1-2
The QPAC PrOgramo ettt e e e e et e e e e et e e e e ana s 1-3
N [o] o X 00 o1 1{ o PP 1-4
Format of User Statementso 1-5
107070 10 0= 0| £ 1-5
QPAC Listing CONIIOL.. e 1-5
The PARM Control Statement.... ... e 1-6
0] 4 1 1= | PSPPI 1-6
PARM Option User DefaultS.........ccoiiiiiiiiiiic e 1-8
COPY Statement (IBM Z/OS)ccouiiiiiiiie e 1-9
Load Module Code MOE.........coouuiiiiiiiii e e e e 1-9
Data Security EXTENSIONSciii e 1-10
Chapter 2. Input/Output Definitions...........coeueiiiiiiiiirr e 2-1
File Definitions (Fixed Length Records IBM z/OS)coooviiiiiiiiiiieii e, 2-1
General Format of the File Definitions..........cooooi i 2-1
Additional Parameters for File Definitions (Fixed Length)cccoooiiiiiiiiiins 2-2
File Organizationsoiiiiiii e 2-2
Options for General Definitionso 2-3
Options for Tape File Definitions ..o 2-4
Options for VSAM-File Definitionsooieiii e 2-5
Options for Print File Definitions..........c.cooiiiiiiii e, 2-6
File Definitions (Variable Length Records).........cccoooiiiiiiiiiiiiiii e, 2-7
General Format of File Definitions..........coouiiiiiiii e 2-7
Additional Parameters for File Definitions (Variable Length)c...cooo. 2-8
Variable Record Lengths and Block Lengths...........ccoooiiiiiiiiiii 2-8
Options with Special Importance on Undefined Length Records 2-9
General Hints on File Definitions 2-10
General Points 0n VSAM ... 2-11
General Points on Variable Record Lengths...........cccoiiiiiiiiiii, 2-12
Dynamic File Allocation for z/OS ... 2-13
Basic Format of File Definition for JCL Static Allocation..............cccooiiiii. 2-14
Basic Format of File Definition for JCL Dynamic Allocation..............cccc.ccuuneeee. 2-14
Basic Format of File Definition for Full Dynamic Allocationc............. 2-15
Additional Commands for JCL Dynamic and Full Dynamic Allocation.............. 2-15
Reserved Field Symbols for JCL Dynamic and Full Dynamic Allocation.......... 2-16
Tape Full Dynamic AIOCatioN.........coouiii i 2-16
Data Set Only CommandsS........cuuiiiiiiiiii e 2-17
Neutral CommaNndS ... e 2-17
ANYRC or ..RC Return Codesccouiiiiiiiii e 2-18
Chapter 3. Input/Output INStructions..........cceueiiiiieiiiiiiic e e 341
INSErUCLIONS OVEIVIEW ...t e e e 3-1
System related INStrUCIONS ... 3-1
File related INStructionS e 3-1
I/0 Instructions for Sequential ProCessingccccovviiiiiiiiiiiiii e 3-1
Random Instructions for VSAM Files........ccoiiiiiiiiiiiii e 3-2
General FOMMat.. ..o 3-2
File Related INSrUCHIONS i e 3-3
The OPEN INStrUCTION ...coiui e 3-3
The CLOSE INStruCtioN ..o e 3-3
ALLOC / UNALLOC for Dynamic File Allocation (z/OS).........cccovviiiiiiiiiiiinieeenn. 3-3
I/0 Instructions for Sequential Processingcccuiiiiiiiiiiiiiiii e 3-5
The GET INStrUCtioN ..o e 3-5
The PUT INStruCtioN ... e 3-6
The PUTA (Put Addition) InStruction ..o 3-7
The PUTD (Put Delete) INStruction...........coouiiiiiiiiii e 3-7

IV QPAC-Batch Reference Manual

The SETGK and the SETEK INStruCtionsSovuiiiiiiii e 3-7

Random Instructions for VSAM Filesoooiiiiiiiii e 3-9
The READ INSIFUCHION ...ceiiiii e 3-9
The READGE INStrUCtioN ...c.eei e 3-9
The READUP INStruCtion oo 3-10
The REWRITE INStruction.......ooe e 3-11
The INSERT INStruCtioN ..o e 3-11
The DELETE INStruCtionc.e e 3-12

Printer File related InStructions............ooi e 3-13

PDS related INStructions (Z/OS)covuiiiiieii e 3-14

System related INSrUCHIONSiiiiii e 3-15
The GETIN INSTrUCTION ... e 3-15
The PUTLST INSTrUCHION .coeviiii e 3-15
The PUTPCH INStrUCHION .oouuiii e 3-15

Titles for Printer FileSo 3-16
The HEADER Definition (Static Title LIN€S)c...oviiiiiiiiiiii e 3-16
The TITLE Definition (Dynamic Title Lines)..........ovviiiiiiiiiiiiiiiie e 3-17

Processing Limit Definitions ... 3-18
General format e 3-18
Special fOrmMats. ..o 3-19

Operator Communication INStructionscooooiiiiii i 3-20
The WTO Instruction (Write to Operator with no Response)cccoeevennn. 3-20
The WTOR Instruction (Write to Operator with Response)..............cccoeeeevn. 3-20
Synchronisation INSrUCtIONSccoviiiii e 3-21

Chapter 4. Static Program Structure...........ccceoiiiiiiiiiiicirr e 4-1

Automatic Processing Controlooiiiiiiiii e 4-1
The END InStruCtion ... 4-1
The NORMAL INStruCtion ... 4-2
The LAST INStrUCHION ... ccee e 4-2
The FIRST INStruction ... e 4-3

Teamwork of NORMAL, LAST, END with Implicit LogiC.........ccooviiiiiiiiiis 4-5

Program Logic and Jump INStruCtionsoviiiiiiiiiii e 4-6
The GOSTART INSrUCHION ...uviiei e 4-6
The GOBACK INSTIUCTIONuiiiii e 4-6
The GOLAST INSITUCLION ...euuiiiiiiiii e 4-7
The GO TO INSIFUCTION ..ot 4-7
The GODUMP INSTFUCTION «..uuiiiiiiieee e 4-8
The GOABEND [,nn] INStrUCtioNcovniiiiiiii e 4-8
The GOEND [,nn] INStrucCtion ... e 4-8

Chapter 5. Internal Logical Control........cceeeueiiiiiiiiiiniie e 5-1

IMPliCit ProCesSing LOGICceuuuuiiiiiiieeiee e 5-1

EXPliCit Processing LOGIC. ...couuuuiiiiiii e 5-3

The Get BIOCK CONCEPT ..iie e 5-4

Chapter 6. Field Definitions and Symbol Associations........c...cooeeiiiiiiinciiinnennnn. 6-1

Overview and HintS ... e 6-1

The Internal Working Storage Area (Below the 16 MB Lin€).........c.ccoveviiiiinininnnnnn. 6-1

The Internal Hiper Space (Above the 16 MB Lin€)........c.cooviiiiiiiiiiiiiiiecie e 6-2

The External Area (located outside the QPAC program)cccceveveiiiiieiiiinneeeennnnn. 6-2

Implicit Symbol ASSOCIAtIONcccviiiii i 6-2

Explicit Symbol ASSOCIAtIONcoiiiii i 6-4
Basic Format of Explicit Symbol Association for Single Fields and Literals........ 6-4
Basic Format of Explicit Symbol Association for Areasc.ooiiviiiiiinninenn, 6-5
Simplified Format of Explicit Symbol Association............c.cooiiiiiiiii e 6-6
Redefines in StruCtUres ... e 6-7
Explicit Symbols for File Definitions ..o 6-8
Explicit COBOL and PL/lI Record Structure Assignment............ccooevveiiiinieeennnnn. 6-10
BASED SHIUCTUIES ..eieiiiii et 6-11

Symbolic Indexed AdAreSSiNgoviiiiieiiiiiie e 6-12

Reserved Field SYmbOIS..........oiiiiii e 6-13
Reserved Field Symbols by Groupccoooviiiiiiiiiiceeeee e 6-13
Reserved Field Symbols in Alphabetical Order...........c.cccooiiiiiiiiiiiiiiee 6-19

V QPAC-Batch Reference Manual

Additional Information to Reserved Field Symbolscccooeiiiiiiiiiiiiis 6-23

SymMDbOl CroSS-REfEIENCEcovuiiiie e 6-24
Chapter 7. Processing Commandsooueeiiiiiieiniinnccn e err e e 71
Overview and Hints. e 7-1
The High-Level-Format Instruction SEToiiiiiiiii e 7-2
BasiC FOrmMat... ..o 7-2
Special formats ... e 7-3
The SET Transfer INStruction ... e 7-5
The SET Arithmetic Instruction............oo e 7-6
The SET Transfer Instruction (Special Format)ccooooiiiiiiiiiiiiiee 7-7
The SET Edit INSTrUCTION «...eiii e 7-9
The SET Transfer Instruction for Variable Field Lenghts................cooviiin. 7-12
Index Register Instructions and Indexed Addressingcccccovviiieiieiineiiviecenee. 7-13
Character String Operationsccoouiiiii i 7-14
The PARSE INSIrUCHIONuiii e 7-14
Chapter 8. Logic Control Commandscccoviimmeniniimminmr e 8-1
The IF THEN ELSE INStructiono 8-1
Visual Examples of the ProCesso 8-6
ELSEIF Case StrUCIUIe......c.u e 8-8
Condition Statement with Several Alternatives ...l 8-8
DO LOOP INSIIUCTIONS ...eeiciii et e e e e aaas 8-9
The DO-NN Loop INStrUCLIONciiici e 8-9
The DO-XN INSTIUCTION .eeeuiiiiei e 8-10
The DO-WHILE INStrUCHION....ccuuiiiiii e 8-10
The DO-UNTIL INSTrUCTION....cceii e 8-11
The DO-FOREVER INSTrUCHONccoiiiiiici e 8-11
Extended Logic Commands for Loop Instructionsccoooveiiiiiiiiiiiines 8-12
The DOBREAK INSIrUCHIONceeiicee e e 8-12
The DOQUIT INStructioncoouiii e, 8-12
Chapter 9. Subroutines and External Programsccoimieeiicininnnnnenncnn, 9-1
Internal Subroutine CSUB...... ..o e 9-1
Additional Control Commands for Subroutines. ... 9-2
The SUBREAK INSIrUCTION ...ccoiiiii e 9-2
The SUBQUIT INSTrUCHION.....ciiiiiiie e 9-2
External Subroutines (CALL Exit ROULINES)........c.cooiiiiiiiiiiii e, 9-4
External Subroutines (LINK Exit ROULINES)ccovviiiiiiiiiii e, 9-6
External Tables (Load Table) or SUbroutines..........ccooooiiiiiiiiiii e, 9-7
Deletion of Loaded Tables or Sub RoOUtINES..........cooiiiiiiiiiiiiiiii e 9-8
QPAC as Subroutine (Called from User Main Program)........cccccoovieiiiiiiiiiiiineeiennnnn. 9-8
Ty (=TI O | RPN 9-8
Subsequent Calls.... ..o e 9-10
[T b=Y I O | RPN 9-11
Chapter 10. System Libraries and System Components.........ccccccovmreucirrrnennnn. 10-1
RV 5 P 10-1
Basic Format of VTOC File Definition..........cccoooiiiiiiiiii e 10-1
General Hints on VTOC USAQEuiiiiiiiiiiiiii et 10-2
z/OS-Libraries (Partitioned Data Sets)........ccocoiiiiiiiiiiii e, 10-3
Basic Format of z/OS-Library File Definitioncc..ccooiiiiiiiiiii 10-3
General Hints 0n z/OS Libraries..........iiiiiiiiie e 10-4
SCAT (z/O8S System Catalog)coeeuuieiiiiiee e e 10-7
Basic Format of the z/OS System Catalog File Definition...........c.....ccooeeiiie. 10-7
SLOG (Z/OS SyStem LOGGEI)....uuuiiiiiiieiiiiii e 10-9
Basic Format of the z/OS System Logger File Definitioncccc..ocieiiinen. 10-9
Chapter 11. Integrated Functions (Function BoxX).........ccccuieemniiiiniiinnnnennnnnnn. 111
FUNCIONS OVEIVIEW ... e 11-1
Applicational DeSCrIPtiON ... 11-2
BINTABS(): Binary Table Search........c.cc.oiiiiiiiii e 11-4
CALENDAR(): Date CONVEISION.....couuiiiiieeii et e e e aans 11-6
CHANGEF() / CHANGER(): Replacing Character Strings.........c...cccoeevvveeennnnn. 11-10

VI QPAC-Batch Reference Manual

CHANGEW(): Replacing Character Strings in Work Area-Tables 11-11

COMPAREF() / COMPARER(): Compare Files / Record Areas........................ 11-13
IDCAMS(): VSAM Catalog FUNCHIONS.......ccouiiiiiiiiiec e 11-15
IEBCOPY(): z/OS Ultility FUNCLIONSoiiiiiiiiii e 11-17
PRINTF() / PRINTR(): Print File / Record Areas...........coccouuiiiiiiiiinieiiiieeecen 11-19
PRINTW(): Print Work Area, Hiper Space or External Area.......c.....ccccoeevevennnnnn. 11-20
SCANF()/ SCANR(): Scan File / Record Area..........ccoeveeieiiiiiiiiiiinieiiieeeeen 11-21
SCANWY(): Scan Work Area Tableoooooiiiiiiii e 11-23
SEQCHK(): Sequence ChecCKoooouuiiiiiiii e 11-24
SETIME(): Set Time Interval..........ccooouiiiiiii e 11-26
SNAP(): Snapshot of QPAC Fields and Registersccccoovviiiiiiiiiiiineeecinn. 11-27
SORTF(): SOt File e 11-28
SORTR(): SOMt RECOMS ... ciiiiiiicie e 11-30
SORTW(): SOt WOIK AMCa ...eiieiiiii ettt 11-32
Chapter 12. DB2 Support Feature............ccoiiiieciiiiiciiirrcrerrer e 121
DB2 Data Base Definitiono 12-1
General Format of DB2 DB Definition ..o 12-1
CAF Support instead of the TSO Batch Program IKJEFTO1 ..., 12-3
CAF Return Codes and Reason Codesc.oiiiiiiiiiiiiiiii e 12-3
Usage Of DB2 Data BaSesS........ccoiiuuiiiiiiiii e 12-4
FIoating PoOint ..o e 12-5
Hints 0N ProcesSing LOGIC ...cuuiiuiiiiiiie e e e e 12-8
The WHERE INSIrUCHIONcovnii e 12-9
The FETCH INSTrUCHION ...coeeii e 12-10
The PUTA INSTFUCLION ..couiiiece e 12-10
The PUTD INSIrUCHION ..ccuiiiiee e 12-11
The ODB= Definition (initial loadlnitial Load)ccccooiiiiiiiiiiie, 12-11
Hints on Job Control and Execution ... 12-12
Enhanced SQL Command FUNCLiONS ..o 12-13
Reserved Field Names (only valid for EXECSQL).......cccovviiiiiiiiiiiiiiiiieienn. 12-13
The EXECSQL Single INStruction ... 12-14
Single Instruction EXamples ... 12-15
The EXECSQL Cursor Instruction for SELECT Commandsc.cccevvneeenen. 12-20
Sample SELECT Cursor Instruction..........ccoooiiiiiiiiii e, 12-21
Additional Sample SQL CommandsScccuuiiiiiiiiiieiiiie e 12-22
F 0 (o T @ 0] 421 o o1 S PP 12-23
Chapter 13. DL/l Support Feature............coiiiimiiiiiiciirrc e 131
DL/I Data Base Definitionoooouiiiiiiie e 13-1
Grundformat der DL/l DB Definition ... 13-1
General Application OVEIVIEWiiiiiii e 13-3
HIiNts 0N ProCessing LOGICuuu it 13-6
The SETGK INStrUCHION ... e 13-6
The SETEK INSrUCHON ... e 13-8
The PUTA INSTIUCLION ...ouiiiie e 13-8
The PUTD INSIrUCHION ..ccuiiii e 13-9
The ODB= Definition (Initial Load)cccovviiiiiiii e, 13-9
DL/I Database Related Commands with SSAS. . ..o, 13-10
Chapter 14. MQSeries Support Featurecccoorvieiiiimiiiiiiir e 14-1
MQSeries Single Message Queue Definitionccooiiiiiiiii 14-1
Basic Format of the MQSeries Message Queue Definition............................... 14-1
Processing of MQSeries Message QUEUESccooiiiiiiiiiiiiiiiii i 14-3
MQSeries COMMEANASc.uniiii e e e e e e e e 14-4
N 5 T 14-9
ODbject DESCIIPIOr Al€a ... i 14-9
Message DesSCriptor Ar€auu i 14-9
Options that the MQGET Ar€aoieiiiiiiiiiiiii e 14-9
Options that the MQPUT Ar€aooiiiiiiiiiiiii e 14-10
Dead Letter Queue Header Ar€auoviiiiiiiiiiiiiie e 14-10
RFH Header Area 14-10
02 (02 =] o [LY N Y- TP 14-10
EQUATES of the Different Options and Field Values..........c.....oociiiiiiiiiineninnnnnn. 14-12

VIl QPAC-Batch Reference Manual

Values Related to MQOPEN ... 14-12

Values Related t0 MQCLOSEoiiiiiiiiiee e 14-12
Values Related to MQGMOccooiiiiiiii e 14-12
Values Related to MQPMO ... e 14-13
Values Related to MQOD Object Descriptor........cccuuviiiiiiiiiiiiiiiiceeecee 14-13
Values related to MQMD Message Descriptor.........oovvvveiiiiiiiiiiiiiiiiiiiececein 14-14
Values Related to MQINQ Call ... e 14-15
Chapter 15. CICS External Interface Support Feature (EXCI).........ccceeeunuunnnnnn. 15-1
EXCI External Batch to CICS Communication Definition...................c..coooi. 15-1
Chapter 16. ISPF/PDF Support Featureooeuiiimimiiiimiccirres e e 16-1
ISPF/TSO Command Definitionccuuiiiiiiiiiice e 16-1
Basic Format of the ISPF Command Definitions..........cccoooviiiiiiiiiiien e, 16-1
Example of Syntax: QPAC Program Example QPACETBHc.oeee. 16-11
Panel Definition: Example QPACETBHOTcoooiiiiiiiiiii e 16-14
CLIST Definition EXampPlecoovuiiiiiiicee e 16-15
Appendix A. Basic Instruction Formats (Summary)cccceoiiiiiiiiiiiiiiiniinininnens A-1
OV I VIBW ettt e e A-1
Imperative Instructions and Operations....... ..o A-1
General FOrmats e A-1
FOrmat 1 e e A-2
O At 2 e A-2
O At 3 e A-2
oMMt 4 e A-2
Literals / CoNStants ...ooeuuiiii e A-3
Simple MoVe OPErationciiiuiiiii e A-4
B0O0I€an OPEratioNS ... ccvuiiiii e A-5
B0Oolean AND ... e A-5
= To o] 1= =T o T P A-5
B0oolean XOR ... e e A-6
AlgebraiC OPerationsoooouuii i A-7
o [1140 o PPN A-7
SUDIrACTION . e A-8
Y U] T o %= 4 [0 o PSP A-9
DIVISTON . e A-10
ConVersion OPEratioNSiiiii e A-11
Packed to Binary CONVErsioNoiiiiiiiiiiiie e A-11
Binary to Packed CONVEIrSIONc..oiiiiiiiiiici e A-12
Pack Operationcoouiiiii e A-13
UNPack Operation ... e A-14
Zero Add OpPeration ... e A-14
Hexadecimal CONVEISION ... A-15
Editing OPerationsi oo A-15
User Specified Edit MasKS ... A-15
User Defined Hexadecimal Edit Masksooooiviiiiiiiiiiiiiiieece e A-16
Predefined Edit MAsKSc..uiiiiiiiii e A-16
Special Value INSIrUCtIONSiiii e A-19
General fOrMaAt.o e A-19
SYSIEM DAt .uniiiiiii e A-19
SYSIEM TIME e e A-19
Current Date/Time ..o e A-20
The IF THEN ELSE Instruction (Basic Format) ..., A-21
General Format of the Condition Instruction.................cooii i, A-21
Format 1 - Logical Comparison (CLC) ... A-21
Format 2 - Arithmetic Comparison of Packed Fields (CP)ccccoovviiiiiiinen. A-22
Format 3 - Comparison with Constants (Length Specified).........c.....ceiiiie. A-22
Format 4 - Comparison with Constants (Length Not Specified) A-22
Format 5 - Logical Comparison with Keywordcccoooiiiiiiiiiiiiiie e A-23
Format 6 - Binary Arithmetic Comparison............c.cocoiiiiiiiiiii e A-23

VIII QPAC-Batch Reference Manual

Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

1: QPAC-Batch system OVEIrVIEWcouuiiiiiiiiiiiiii e 1-1
2: Syntax checking and machine code generation..............ccocooiiiiiiiiiiiees 1-3
3: QPAC PARM OPHiON...ccuiiiiiiiii et 1-4
4: Sample JCL fOr Z/OS ... e 1-4
5: Sample JCL for z/OS with PARM QPGM= ... 1-4
6: Control of the QPAC liIStiNg......ccouuuiiiiiiiieee e 1-5
7: Format PARM defaults load module QPACBOPT ... 1-8
8: Format (z/OS) COPY statement ..o 1-9
9: Execution under z/OS. e 1-9
10: QPAC load module COAe ... 1-9
11: Skeleton of routine QPACUSER ..o 1-11
12: The first 4 bytes: the record description wordccooeviiiiiiiiiiie e, 2-8
13: File Communication Area (FCA)coiiiiiiii e 2-9
14: File Communication Area (FCA)coiiiiiiiie e 2-11
15: JCL static allocationoooiiiiiiiii e 2-13
16: JCL dynamic allocation..........coouuiiiiiii e 2-13
17: Full dynamic alloCationcouiiiiiii e 2-13
18: Overview of system related instructionscccoooiiiiiiii e, 3-1
19: Overview of file related instructions ..., 3-1
20: Overview of I/O instructions for sequential processingccc.ccceevieieeennnne. 3-1
21: Overview of random instructions for VSAM..........ccoiiiiiii 3-2
22: Sample 1/O INStruCtionSooen e 3-2
23: Sample command sequence for dynamic file allocation............................. 3-4
24: Example of GET commands without EOF control block 3-5
25: Example of GET commands with EOF control block.............c.ccoiiiiiiiinniii. 3-6
26: File Communication Area (FCA) ... 3-8
27: Return code check after READ instruction.............cccooiviiiiiiiiiiiiiiiees 3-9
28: VSAM RRDS direct access with READccooiiiiiiiiiiiiii e 3-9
29: Return code check after READGE instruction...............ccoooiiiiiin. 3-10
30: SAM RRDS direct access with READGE ... 3-10
31: Read for Update mit der READUP instruction............ccc.oooiiiiiiiiinn. 3-10
32: Update a record with REWRITE after READUP ... 3-11
33: Insert a record with INSERT ... 3-12
34: Delete a record with DELETE ... 3-12
35: Delete a record with DELETE ... 3-12
36: Instructions overview for printer filesccoooiiiiiii i 3-13
37: Sample instructions for printer files............cooviiiiiiiii i 3-13
38: The dynamic TITLE routineccovieiiiiii e, 3-17
39: Processing limit definition general formatcooiiiiiii e, 3-18
40: Processing limit definition (several from-to groups)cccoeevviiviiiieennnnnn. 3-18
41: End of processing when output limit is reached ...l 3-18
42: Processing limit definition special formatscccooooii 3-19
43: Operator communication - console outputcooiiiiiiiii 3-20
44:The END statement is the physical end of all definitions..............ccccceeeeee. 4-1
45: Preprocessing with the NORMAL instructionociiiiiiiiiinen, 4-2
46: End processing with the LAST instruction...........ccccooiviiiiniie, 4-2
47: The FIRST instruction allows several processing sequences..................... 4-3
48: Hierarchical 1eVel Oooouiiii e 4-4
49: Generated GET within NORMAL with implicit logic control 4-5
50: Generated PUT within LAST or END with implicit logic control 4-5
51: The GOSTART iNSTrUCHIONiiiiii e 4-6
52: The GOBACK inStruCtionc..oiiiii e 4-6
53: The GOLAST iNStruCtioN......oieeie e 4-7
54: The GO TO INStrUCHION ...ieeiii e 4-7
55: The GODUMP inStruCtioNnooiiiiii e 4-8
56: The GOABEND inStruCtionc.oiiiii i 4-8
57: The GOEND inStruCtiono.iiiii e 4-8
58: Implicit processing logic with file definitions without numbers.................... 5-1
59: Generated logic with implicit processing..........ccccooiiiiiiiiiiiii e, 5-2
60: Generated logic with implicit processing with NORMAL and LAST 5-2
61: Explicit processing logic with file definitions with numbers......................... 5-3

IX QPAC-Batch Reference Manual

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

62: 1/0 instructions with explicit processing l0giCccoovviiiiiiiiiiiiee 5-3
63: Generated logic with explicit processing l0gQiC..........coovviviiiiiiiiiiieeei 5-3
64: EOF control without AT-EOF definitionccccoviiiiiiiiiii e 5-5
65: EOF control with AT-EOF definition ... 5-5
66: The preformatted internal working storage area............cccooovviiiiiiiiiinnes 6-1
67: /O Instructions with explicit processing [0giC.........ccooiviiiiiiiiiiiiiiiis 6-2
68: Implicit position Symbols ... 6-3
69: Explicit definition of field formats..........ccooo 6-3
70: EXpIiCit SymMDbOl tyPes ..o 6-4
71: Basic format explicit symbol association for single fields and literals 6-4
72: Basic format explicit symbol association for areasccccccoceeveiieinnnn.n. 6-5
73: Diagram explicit symbol definition............ccooiiiiiiii 6-5
74: Field formats for conversion instructionscoiiiiiiiiiiiiii e 6-5
75: Sample explicit symbols with field formatsccoooiiiiii 6-6
76: Numeric explicit symbols with edit masksccoocoiiiiii i 6-6
77: Simplified format of explicit symbol associationccooL 6-6
78: Redefining work area structures. ... 6-7
79: Redefining single field structurescoooiiiiii 6-7
80: Redefining literal Structures ... 6-7
81: Redefining based structures ... 6-7
82: Redefining I/O StrUCIUrESc.vviiiiii e 6-8
83: File area association with explicit symbols...........cccooiiiiiiiiii 6-8
84: Hierarchical structure of symbol associationcccceeeiiiiiiiiiienen, 6-9
85: Diagram explicit COBOL and PL/I record structure association............... 6-10
86: Import of an existing COBOL record structure...............ccocoiiiiiiiiinnnnnnn. 6-10
87: Basic format of based structures............cccooiiiiiiiiiiii 6-11
88: Loading the pointer field ... 6-11
89: MOVING @ SIFUCTUIE ..o 6-11
90: Diagram symbolic indexed addressingccccoivieieiiiiniiiiiiie e 6-12
91: Indexed addressing by appending index registers.............ccoooiiiieinenn. 6-12
92: Explicit length specification overrides implicit length definition................ 6-12
93: Diagram symbol cross reference list ..o 6-24
94: Extract of a symbol cross reference list.........c.c.cocooeiiiiiiiiiiiciie. 6-24
95: Field formats OVEIVIEWooiiiiiiiieiei e 7-1
96: Literals over several lINESc.i i 7-2
97: Transfer and concatenate with the SET transfer instruction 7-5
98: SET transfer instruction with address modified receiving field................... 7-5
99: SET transfer instruction with figurative expression.............c...cccoevviiiinn. 7-5
100: Combination of arithmetic field formats ... 7-6
101: Solution according to mathematical rules..............cooiiiiiiiiiii . 7-6
102: Negative numeric literals..........iviiiii i 7-6
103: Bracketed eXpreSSiONSo 7-6
7 1Y T Yo LU Lo T 7-7
105: Character - Hexadecimal CONVErsioNccoooviiiiiieiiiiiiieiii e 7-7
TO6: TranSIate...ccu e e 7-7
107: Move NUMErIC and MOVE ZONEceuuiiiiiiii et eans 7-8
108: Move With OffSet.....ccoiiiii e 7-8
109: Boolean AND fUNCHONo.uiiiiiii e 7-8
110: Boolean OR fUNCHONcoouuiiiiiie e 7-8
111: Boolean Exclusive OR functiono 7-9
112: Timestamp CONVErSIONooou i 7-9
113: self-defined edit MasKS ... 7-9
T14: MaSK tYPE A oo 7-9
115: Sample resolution mask type A ... 7-10
T16: MaSK tYPe B ... e 7-11
117: Sample resolution mask type B.........coooviiiiiiii e 7-11
T18: MASK tYPE C e e 7-11
119 MaSK tYPE D oeeeeeiiie e 7-11
120: MasSK tYPE E oo 7-11
121 MasKeN YD F oo 7-12
122: MASK tYPE G.eoieeiiie e 7-12
123: MaSK tyPe H ..o e 7-12
T24: MASK tYPE | oo e 7-12
125: MASK tYPe K. 7-12

X QPAC-Batch Reference Manual

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

126: SET instruction with indexed addressingccccoeviiiiiiii i 7-13
127: Short form index register instructionscoooeiiiiiiiiiii i 7-13
128: SET instruction and indeX registerscccoevviiieiiiiiiiii e 7-13
129: Loading index registers by use of the SET instruction 7-13
130: Diagram basic format condition definitionooiiii . 8-1
131: Diagram relation condition ..o 8-1
132: Diagram status condition ..o 8-1
133: Symbols and literals within condition definitionsccccooiviiiin, 8-2
134: Comparison of different arithmetic formats ..., 8-2
135: Figurative constants within condition definitionsccoooiiin 8-3
136: Comparison operands with variable lengthcco.coo 8-3
137: Example of the solution rule of combined conditionsccc.co. 8-4
138: Rule for combined conditionscooouiiiiiiiiiiiii e 8-4
139: Example 1 without alternatives ..o, 8-7
140: Example 2 with alternativescoooiii i 8-7
141: Diagram ELSEIF case structurecccoooiiiiiiiiii e 8-8
142: Usage of ELSEIF case structure..........cooooiiiiiiiiii e 8-8
143: Traditional nesting of IF statements............ccooooii 8-8
144: DO-LoOp inStruCtions OVErVIEWiiiiiiiiii i 8-9
145: Diagram of loop instruction with fixed number of repeats......................... 8-9
146: Usage of loop instruction with fixed number of repeats..............ccc..c..... 8-9
147: Diagram of loop instruction with fixed modifiable number of repeats...... 8-10
148: Usage of loop instruction with fixed modifiable number of repeats......... 8-10
149: Diagram of loop instruction with positive condition repetition.................. 8-10
150: Usage of loop instruction with positive condition repetition 8-10
151: Diagram of loop instruction with negative condition repetition................ 8-11
152: Usage of loop instruction with negative condition repetition................... 8-11
153: Diagram of loop instruction with endless cyclecccoooooiiiiiins 8-11
154: Usage of loop instruction with endless cycle.............ooiiiiiiiiin s 8-11
155: Diagram of DOBREAK inStruCtion.............cooouiiiiiiii e 8-12
156: DOBREAK branches to the beginning of the 1oopciiiiiis 8-12
157: Diagram of DOQUIT instruction ... 8-12
158: DOQUIT immediately leaves the 100Dcocuiiiiiiiiiiiii e 8-12
159: Basic format of subroutine usageccooooiiiiiiiiii i 9-1
160: Graphical example of subroutine nesting..............cccoooviiiiiiiiiiiiie e 9-2
161: Subroutine instructions SUBREAK and SUBQUITocovviiiiiiiiinienenn. 9-3
162: SUDIrOULiNg PrOCESSING ...u.iiiiiiiiii et 9-3
163: Format of CALL instruction for Assemblerccccoooiiiiiiiiiiiiii e, 9-5
164: Sample Assembler exit routine ... 9-5
165: Passing work areas to external programsccccoovvviiiiiiiieiiinieienin e, 9-5
166: Indexed working storage addresses are NOT ALLOWEDc.cccoeeee. 9-6
167: Continuation lines of CALL instruction ..o 9-6
168: Examining the return code RC ..ot 9-6
169: Example Load Table Based Structure............ccceeeiiiiiiiiiiiiiii e 9-7
170: Example dynamic loading of a module.............ccooooiiiiiiiiiicii e 9-7
171: Addressing the external area...........ccooooiiiiiiiiiici e 9-9
172: QPAC as a subroutine: Initial callcoooiiiiiiii e 9-9
173: QPAC as a subroutine: Subsequentcallscccooveiiiiiiiiiiii 9-10
174: QPAC as a subroutine: Final call.........c.c.oooiiiiiiiiiiii 9-11
175: DD statement for z/OS VTOC reCcordsccuoveeeiiiiiiiiiiiieeieei e 10-1
176: VTOC layout returned by QPAC ... 10-2
177: Example reading VTOCS ...coouuiiiiiiii e 10-2
178: Member selection for PDS library file.........coooiiiiiii 10-4
179: Record length definition for PDS ... 10-4
180: FCA for PDS library file aCCeSSoiiiiiiiiiiiiiiie e 10-5
181: FCA for z/OS System Catalogcccveviviiiiiiiiiie e, 10-7
182: SCAT record SIrUCTUIEoeiii e 10-8
183: EXamMPIe SCAT ..o 10-8
184: FCA for z/OS System LOGQerc.uiiiiiiiiii i 10-11
185: EXample 1 SLOG ...t 10-11
186: EXample 2 SLOG ... it 10-11
187: Integrated functions OVEIVIEWooiiiiiiiiiiiii e 11-1
188: Basic format of function routines ... 11-2
189: Parameter specifications for function routinesooinill 11-2

Xl QPAC-Batch Reference Manual

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

190: Parameter specifications in the internal working storage....................... 11-2
191 Parameter SEQUENCEiie et e e e e e e e 11-2
192: Redirecting print OULPUL ... 11-3
193: Testing the function return code.............ooiiiiiiii s 11-3
194: BINTABS() €XamMPIES ... 11-5
195: CALENDAR() €XamMPIES ...covuiiiiiiiieeeei e 11-9
196: CHANGEW/() eXampPIes ...coouuiiiiiiiiiieeee e 11-12
197: COMPAREF() / COMPARER() EXamples..........cccoveviiiiiieiiiiiiieeeiiiiees 11-14
198: Example 1 IDCAMS()ccooiiiiiiicee e 11-16
199: EXample 2 IDCAMS() ..oeeeiiieeiiiiee e e e 11-16
200: EXample 3 IDCAMS() .uuuuniiieeeiieiiiiiee et e e e e e eeeaneas 11-16
201: IEBCOPY() €XAMPIES ..ounieiiiiiieii ettt 11-18
202: PRINTF() / PRINTR(*) €XamMPIES....oiiiiiiiiiiiiiiiieie e 11-19
203: PRINTW() €XamMPIES . .ovniiiiiiie et 11-20
204: SCANF() / SCANR() eXamples.......ccoiiiiiiiiiiiiiiiie e, 11-22
205: SCANW() €XAMPIES ..ot 11-23
206: SEQCHK() €XamMPIESuiiiiiiiieiii e 11-25
207: Sample SNAP() OULPUL.....cooue e 11-27
208: SORTF() @XamPIES ...coeeiiiiiiiii e 11-29
209: SORTR() example with two defined subroutinesco..ooo. 11-31
210: SORTR() example with one defined subroutine.....................coeeee. 11-31
211: SORTW() €XAMPIES ...ceeniiiiieii et e e e 11-32
212: Unique specification of a table object..........cc..ccooiiiiiiiii i, 12-1
213: Selection of multiple COIUMNS.........coouiiiiiiiii e, 12-1
214: Selection of multiple columns (CONt.).......ovviviiiiiiiiii e, 12-1
215: Sort of rows and selected COIUMNS...........cooiiiiiiiiiiii e 12-2
216: Sort of rows and selected columns (CoNt.)........ccoouiiiiiiiiiiiiiiiiiiiis 12-2
217: Sortieren von Columns aufwarts oder abwartscoooiiinn. 12-2
218: SQL return code in FCA field ..SQLCODEccoiiiiiiiiiiiiiiieeeii s 12-3
219: Examining the SQL return code ..o 12-3
220: DB2 file definitionsooooiii e 12-4
221: Variable fields with 2 bytes length fieldccoooi 12-4
222: Handling the NULL statecoooiiiiiie e 12-5
223: Releasing the NULL stateccoiiiiiiiii e, 12-5
224: Processing of SQL floating point fields..........c.ooooiiiiiiiii 12-5
225: Display format of an SQL floating point numberccccooiiiiiins 12-5
226: Displaying SQL floating point nUMDbErscoooiiiiiiiiiiiiii e 12-5
227: PRFX=YES prevents from "Duplicate Symbol" situations...................... 12-6
228: FCATOr DB2 ... 12-6
229: Not recommended: direct addressing of columns..............ccooiiiiiinns 12-8
230: Usage of the WHERE instruction (example 1)oooiiiiiiiiiiiiinnnes 12-9
231: Usage of the WHERE instruction (example 2)..........ccccoeiiiiiiiiiiiiiiinnnens 12-9
232: Usage of the WHERE instruction (example 3).......ccooooeiiiiiiiiininiinnnnnn. 12-10
233: String length specification for VARCHAR fields..........ccc.cocovviiiiieinn. 12-10
234: DB2 job coNntrol (Z/OS) ...ceuiiii e 12-12
235: Calling DB2 without IKJEFTOT ...ouuuiiiiiiiiieee e 12-12
236: EXECSQL - Sample DB table definitionsccccoooveiiiiiiiiiiinn. 12-15
237: EXECSQL - Sample DB table definitions (cont.)cccccovveiiiiiieiinnnnnn. 12-16
238: EXECSQL - Example DELETE.......ccooiiiiiiiiiieie e 12-16
239: EXECSQL - Example UPDATEccooiiiiiiiieee e 12-16
240: EXECSQL - Example INSERTouoiiiiiiiiiieee e 12-17
241: EXECSAQL - Example 1 Single SELECT static format.......................... 12-17
242: EXECSQL - Example 2 Single SELECT static format.......................... 12-18
243: EXECSQL - Example 3 Single SELECT static format..........c............... 12-18
244: EXECSQL - Example 4 Single SELECT static format.......................... 12-18
245: EXECSQL - Example 5 Single SELECT static format..........c............... 12-19
246: EXECSQL - Example 6 Single SELECT static format.......................... 12-19
247: EXECSQL - Example Dynamic format.........cccoooeviiiiiiiiiiineiiieeeceen 12-20
248: EXECSQL - Example 1 Static format with Cursor..............c.ccooveeiennnnnn. 12-21
249: EXECSQL - Example 2 Static format with Cursor..............cccoeveiiennnnnn. 12-21
250: EXECSQL - Example Dynamic format with Cursor..............cccc.eceeevennn. 12-22
251: EXECSQL - Examples additional SQL commandscccceeeeeneee. 12-22
252: EXECSAQL - Examples SQL commands in dynamic format.................. 12-23
253: DB2 auto COMMIL ..ooeeiie e 12-23

XIl QPAC-Batch Reference Manual

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

254 Specification of multiple segment names..............cccoevviiiiiiiiin e, 13-2
255: Segment names specification on the following statement...................... 13-2
D24 T o 0 N (o] o 3 I P 13-3
257: Option for special filler..... ... 13-4
258: DL/l example for Z/OS ... 13-4
D41 R B] o7 P 13-5
260: Sample SETGK for DL/l @CCESS .. iuuniieiiaiiieee et 13-6
261: Sample SETEK for DL/l @CCESS «.evuniiiiieiiiieeei e 13-8
262: DL/l commands With SSAS ..o 13-10
263: EXample Of USAQE....cuuiiiiiiiii e 13-10
264: Explicit file definitionsooiiiiii 14-3
265 OULPUL OPLION ... 14-3
266: Examples of the completion code examinationcocoeviiiiinnnnnn. 14-4
267: Example MQSeries CONNECT commandcccouiiiiiiiiiieiiiiineeeceiennn. 14-4
268: Examples MQSeries OPEN commandcccooiviiiiiiiiiiiiiiieeece e 14-4
269: Example MQSeries GET commandcooooiiiiiiiiiiiiie e 14-5
270: Example MQSeries PUT command...........cooouiiiiiiiiiiiiiieieeeie e 14-5
271: Example MQSeries INQY commandcoooiiiiiiiiiiiiiiiiee e 14-6
272: Example MQSeries CLOSE command.........c.ooooeiiiiiiiiiiiiieeeeeeeen 14-7
273: FCA for MQSErIES ..o 14-8

XIll QPAC-Batch Reference Manual

Chapter 1. Introduction

System Overview

Card
Image Image

Cartridge Cartridge
Tape F O Tape

L e |

z/0S

(@]
o
a

©

MVS/PDS
PDSE

MQ Series

Fig. 1: QPAC-Batch system overview

QPAC-Batch Reference Manual 1-1

Purpose of QPAC

The QPAC utility, a multi-function programming system of the 4th generation,
enables the solution of problems within an environment of commonly known file
organizations, in an easy, logical, and programmable form.

Especially (but not exclusively) for the following tasks QPAC is qualified:

e all kind of ad-hoc tasks

e create reports

e create, read, print files and databases

e analyze, reorganize, modify, correct files and databases

e process records individually according to logical decisions

e process a file without needing to take its background into account

All problems are freely programmable, following logical principles without
complicated file definitions, and without special knowledge.

Possibilities

All standard IBM file organizations may be processed:

e all SAM org. on Disk/Tape input and output with fixed or variable record length,
blocked or unblocked

e all VSAM org. input and output

e DL/l databases (DL/I support feature)

e DB2 Databases (DB2 Support Feature)

e 7z/OS PDS/PDSE system libraries

e 7z/OS System Catalog

e z/OS System Logger

e VTOC

e MQSeries

e ISPF/PDF-TSO

e WEB CICS support

1-2 QPAC-Batch Reference Manual

The QPAC Program

The utility consists of several overlays.

It is stored under the name QPAC, and the utility is 'called' using that name.

It occupies a main storage region of at least 1TMB. For each file definition, 4K plus
the 1/0 area must be added. In the remaining main storage area, the processing
instructions will be built up from translation of the QPAC statements.

The size of a program to be written in QPAC thereby depends mainly on the main
storage size.

If no symbolic addressing is used the maximum addressable logical record length of
records processed directly in the I/O areas is 4096 bytes. Records themselves may
be larger.

The processable block length is device dependent.

After submission the QPAC source statements are read in by QPACIN,or the input
medium defined by the EXEC-PARM, and then syntax checked by the QPAC
translator. If no syntax errors are found, machine code is produced and immediately
executed.

QPAC source code

read in by
QPACIN,

PARM:

QPGM=

v
QPAC
error listing . syntax ;hecking
machine code
generation

!

immediate execution

Fig. 2: Syntax checking and machine code generation

QPAC-Batch Reference Manual 1-3

Job Control

The utility statements are read in following the DD statement QPACIN (/QPACIN
DD=).

A list of statements read in, and any error messages, appear in the DD statement
QPACLIST (//QPACLIST DD SYSOUT=A).

Normally the DD names of the input or output files to be processed are their file
identifications (//IPF DD .., //OPF DD ..,//UPF1 ... etc.). It is possible, however, to
give different names explicitly in the file definition; e.g. IPF=*FILEIN, SQ (//FILEIN
DD DCB=DSORG=PS).

With PARM options, console log information can be suppressed or printed on
QPACLIST.

//EXEC PGM=QPAC, PARM="'NOLOG'

Fig. 3: QPAC PARM Option

Any error messages will appear on the console and cannot be suppressed. The
console start and end message may be suppressed by using the NOLOGTIT option.
Please refer to "The PARM Control Statement" for further information.

//SAMPLE JOB

// EXEC PGM=QPAC, PARM='NOLOG'
//QPACLIST DD SYSOUT=*

//IPF DD DSN=

//OPF DD DSN=

//QPACIN DD *

IPF=S0Q

OPF=SQ

END

Fig. 4: Sample JCL for z/OS

The QPAC definition statements may also be directly read in from a PDS. In this
case the DD name is QPACPGM. The member name is defined by the EXEC-PARM.

//SAMPLE JOB

// EXEC PGM=QPAC, PARM='NOLOG, QPGM=SAMPLE"
//QPACLIST DD SYSOUT=*

//QPACPGM DD DSN=

//IPF DD DSN=

//OPF DD DSN=

Fig. 5: Sample JCL for z/OS with PARM QPGM=

1-4 QPAC-Batch Reference Manual

Format of User Statements

QPAC statements are written in free format within columns 1 to 71. Column 72 must
be left clear. Columns 73-80 can be used for any identification or sequence number,
which will not influence processing.

Each statement must be fully contained within one record. The number of blanks
between two statements is not limited. Within a statement there are logically no
blanks.

A blank is signifying the end of the statement.
The number of statements is not limited. Their contents are processed in the

presented procedural sequence (left - right - top - down) and converted into machine
code for execution.

Comments

An asterisk (*) within a statement record signifies that the part to the right of the * is
a comment.

Where it is possible to confuse the asterisk with the operations sign for multiplication
(*), an asterisk followed by a non-blank indicates a comment (e.g. *.).
A double asterisk (**) is not allowed.

An asterisk (*) in column 1 of a statement record signifies that the part to the
right of the * is always a comment.

QPAC Listing Control

With some control commands the QPAC listing can be controlled. They begin in
column 1 with an asterisk:

*SK skip to new page
*SP space 1 line
*SPn space n lines
*POFF print off

*PON print on

Fig. 6: Control of the QPAC listing

QPAC-Batch Reference Manual 1-5

The PARM Control Statement

The first QPAC statement can be one that defines various options, additional to, and
partially independent, of the equivalent job control definitions.

If used, it must contain the characters PARM= in positions 1-5.

Following the fixed character string, the options can be defined in any sequence,
separated by commas.

This statement is compulsory in, for example, DB applications on z/OS systems,
since EXEC parameters are not possible in that environment.

Format

PARM=Option, Option,

The following PARM options are possible:

CALL=5UB COBOL or PL/I programs are internally called via LE
MAIN (Language Environment). There exist two initialization
functions SUB routine and MAIN program. As default
SUB is assumed. The differences are described with
the CALL command in more details.

COPYL | NOCOPYL List copy-books.

DUMP If the QPAC ends abnormally, an additional system
dump is issued (needed in inexplicable situations).

EPARM="...." System parameter communication.
The character string between apostrophes is
communicated as a parameter to a program called by
QPAC when using CALL-"'program',parm or when
the EPARM reserved symbol is used and is stored in the
internal work area. The reserved symbol EPARM is
allocated with the length of the defined parameter.
Additionally, the length of the parameter is presented in
the field EPARML.

HSPACE=nnM Size of the Hiper space.
This area is defined in megabytes. Its maximum size is
depending on the region size.
For its addressing implicit position symbols HPOSnnnn
are available. Index registers or BASED structures may
also be used for addressing.
Individual field symbols may be assigned to this area by
inserting the letter "H" between the position
specification and the equals sign:
e.g. 100H=FIELDSYMBOL, CL20.

LCT=nn Line counter (page length) -
60 (z/0S) overrides temporarily the value given by the JCL.
LIST | NOLIST Print list / no list information -

overrides temporarily the value given by the JCL.

LISTL=nnn Width of the line for the system printer.
Printer output (e.g. from WP0S5200 in the work area),

1-6 QPAC-Batch Reference Manual

LOG | NOLOG

LOGTIT |NOLOGTIT

PLIST | NOPLIST
| NOPLIST=SAVE

QMOD=1oadmodule

QPGM=member

SYNTAX

STRUCT

TRACE=0ON
OFF

WORK=nnnnn
WORK=nnM

XREF | NOXREF
| FXREF

output by PUTLST (QPACLIST), normally has a line
width of 121 characters (including control character).
This PARM definition can increase the width of the line
up to 250 bytes. This is meaningful when working with a
laser printer.

Print log / no log information -
overrides temporarily the value given by the JCL.

The start and the end message on the system log are
suppressed.

The program statements are listed or suppressed. This
way only the statistics may be listed.

NOPLIST forces NOXREF.

With NOPLIST=SAVE the program statements are only
listed in case of an error.

Because the program statements are internally stored
above the 2 GB line a MEMLIMIT size of 1 MB must be
defined.

Load module name of the QPAC program code.
Eliminates the need for a QPACIN statement.

QPAC program as PDS member which may be directly
read in by a //QPACPGM DD statement. The
QPACPGM data sets with a record length of 80 bytes
may be concatenated. The //QPACIN DD is now
obsolete.

Only a syntax analysis of the QPAC statements is
desired. The statements are not executed.

Only a structure test is desired. The statements are not
executed.

If TRACE=0ON is defined QPAC will in case of an
abnormal end list the last used statement sequence.

The size of the internal working storage area can be
enlarged with this definition. The value may not be less
than 12288, and the upper boundary is limited by main
storage size, maximum is 16 MB.

The defined size is the number of bytes and determines
the address positions of the internal working storage.
WORK=80000 results in address positions for the
internal working storage from 1 to 80000.

For its addressing implicit position symbols WPOSnnnn
are available. Index registers or BASED structures may
also be used for addressing.

Individual field symbols may be assigned to this area by
inserting the letter "w" between the position
specification and the equals sign:

e.g. 100W=FIELDSYMBOL, CL20.

Positions 1-4999 are only addressable with the letter
"W

WORK= definitions with a size up to 1 MB are loaded
below the 16 MB line. Larger working storage areas are
placed above the line.

Cross-reference list yes, no or full (also the unused
symbols are listed).

QPAC-Batch Reference Manual 1-7

NOLSR | LSR

PLAN=gpacplan

DB2ID=sysid

GROUPID=xx

For VSAM file definitions the default operand should be
set to LSR or NOLSR (default) respectively.

See under Chapter 12: DB2 Feature

See under Chapter 12: DB2 Feature

An identification unit of up to 2 characters in EBCDIC

(i.e. also multi-punch) format can be defined, with a
space or comma being treated as a delimiter.

PASSWORD=XXXXXX An identification unit of up to 6 characters in EBCDIC
format can be defined, with a space or comma being

treated as a delimiter.

USERID=xxxx An identification unit of up to 4 characters in EBCDIC
format can be defined, with a space or comma being

treated as a delimiter.

STAB | NOSTAB Set abend option

Abends not caused by a P-Check situation are handled
and listed on QPACLIST for documentation.

PARM Option User Defaults

PARM Options that are to be used as standard can be stored as default in a load
module (phase in VSE) with name QPACBOPT.

QPAC looks for and processes PARM options in the following sequence:
1. PARM options in the load module QPACBOPT if existing
2. PARM options from the EXEC parm

3. PARM options at the beginning of the program code

The load module has the following Assembler format:

QPACBOPT CSECT

DC CL80'PARM=..... !
DC CL80'PARM=..... !
END

Fig. 7: Format PARM defaults load module QPACBOPT

1-8 QPAC-Batch Reference Manual

COPY Statement (IBM z/0OS)
In the z/OS version, the source statement library is referenced by the DD statement
SYSLIB.
membername is a name of 1 to 8 characters.

All forms of definition, except for other COPYs, may be used within a COPY book.

COPY-membername

Fig. 8: Format (z/0S) COPY statement

Load Module Code Mode

This extension allows the user to load his QPAC definitions as a load module, e.g.
static QPAC programs can be executed without using QPACIN (z/OS).

The first 2 characters of the name must contain 'QP'.

//EXEC PGM=QPAC, PARM='QMOD=LOADMOD"

Fig. 9: Execution under z/OS

The load module itself contains only QPAC definitions. It is assembled and linked as
code of 80 byte constants, as for example:

QPACLMO1 START O

DC CL80'PARM=WORK=20000 !
DC CL80'IPF=SQ !
DC CL80'OPF=PR !
DC CL80'*. BEISPIEL !
DC CL80'SET OPOS1 = IPOS1,CL120 '
DC CL80'END !
END

/*

Fig. 10: QPAC load module code

It is possible to define a PARM= statement as the first code line.

QPAC-Batch Reference Manual 1-9

Data Security Extensions

QPAC provides the user with an EXIT in which he can define the authorization
rules for access to protected data sets. This USER-EXIT is a phase or load module
with the name QPACUSER. This EXIT is taken for each disk or tape file definition
(only tapes with labels) and checks the file ID. Up to 3 additional control keys can be
defined using PARM options, allowing a 3 level security key or password scheme.

GROUPID=xx 2 characters
USERID=xxxX 4 characters
PASSWORD=XxXXXXX 6 characters

The processing of the security key information, the coding of the necessary checks
on the file identification (file name in the DLBL statement or data set name in the DD
statement), is entirely up to the user; QPAC only puts this information, if available, at
the disposal of the user.

The EXIT must be coded according to the official linkage conventions, i.e. according
to the principle of CALL-SAVE-RETURN.

The RETURN code (R15) on entering QPAC again, must contain either 0, meaning
file access is authorized, or 4 when it is not authorized.

1-10 QPAC-Batch Reference Manual

QPACUSER

*

ENTRY1

*

GOENTRY1

*

EXITOK1

*

EXITNOK1

*

SAVEAREA
*

DEVDSECT
DEVUSARE
DEVUSARI1
DEVUSGID
DEVUSUID
DEVUSPSW

DEVUSAR?2
DEVUSAR3
DEVUSAR4
DEVUSARS
DEVUSARG6
DEVUSART7

*

START 0
USING *,15
USING DEVDSECT, 2

DC XL256'00"

GOENTRY1

*
*

00w w w

*

SAVE (14,12)

L 2,0(1)

ST 13, SAVEAREA+4
(USER CODE)

L 13, SAVEAREA+4

LA 15,0

ST 15,15(13)

RETURN (14,12)

L 13, SAVEAREA+4
LA 15,4
ST 15,16 (13)

RETURN (14,12)

DS 18F
DSECT

DS 0XL100
DS 0XL1l6
DS CL2
DS CL4
DS CL6
DS CL4
DS CL3
DS CL2
DS CL3
DS CL8
DS CL44
DS CL24
END

MUST BE X'00'

POSITION X'100'
RESERVED
RESERVED
RESERVED

LOAD DSECT ADDRESS

RC=0

RC=4

CONTROL FIELD

--GROUPID OR X'0O'
--USERID OR X'00'
-—-PASSWORD OR X'00'
RESERVED

FILE ID OF QPAC DEF
FILE ORG OF QPAC DEF
RESERVED

DDNAME

DSN

RESERVED

Fig. 11: Skeleton of routine QPACUSER

QPAC-Batch Reference Manual 1-11

Chapter 2. Input/Output Definitions

File Definitions (Fixed Length Records IBM z/0OS)

General Format of the File Definitions

SAM:

VSAM:

IPF [n]
UPF [n]
OPF [n]

IPF [n]
UPF [n]
OPF [n]

[*DDname,]

[*DDname,]

og [,rl,bl,opt ...]

VSAM [, rl,opt ...]

IPF
IPFn

UPF
UPFn

OPF
OPFn

*DDname

og
rl
bl

opt

input file definition implicit form
input file definition explicit form

update file definition implicit form
update file definition explicit form

output file definition implicit form
output file definition explicit form

explicitly defined DD name, if missing, IPF/UPF/OPF is

taken as DD name.

organization definition

record length (as positional operand)
block length (as positional operand)

options

QPAC-Batch Reference Manual 2-1

Additional Parameters for File Definitions (Fixed Length)

File Organizations

og SQ
SAM

SD
DISK

MT
TAPE

PR
PRINT

CARD

VS

VSAM
KSDS
ESDS
RRDS

PDS
PDSE

VTOC
SCAT

SLOG

2-2 QPAC-Batch Reference Manual

general sequential (device independent).

The storage medium assigned to this file is defined through
the appropriate SYS-number or DD statement. No particular
medium is assumed. This definition cannot be used for printer
files, since sQ does not support additional functions such as
page control.

sequential disk file (type independent).
A disk unit is assumed as the storage medium, if not, an error
message will occur.

sequential magnetic tape file.

A tape unit is assumed as the storage medium, if not, an error
message will occur.

printer output (type independent).

A printer unit is assumed as the output medium. This
definition contains additional functions such as line and page
control, and title lines.

sequential card file (type independent).

A physical/virtual card reader/puncher is assumed as the
storage medium.

VSAM (virtual storage access method)
is assumed as the access method.

partitioned data sets (see chapter 10)

VTOC format 1 data (see chapter 10)

System or user catalog (see chapter 10)

System logger (see chapter 10)

Options for General Definitions

opt

BL=
BLKSIZE=

RL=
LRECL=

CLR=C'x"
CLR=X"xx"
CLR=NO

CLE=C'x"
CLE=X"xx"

DESC=""

DSN=

WP=

FCA=

various options giving additional information to the file definition
are available.

They are not positional operands, their sequence is therefore
irrelevant. They are coded after the last positional operand,
separated by a comma:

e.g. IPF=TAPE,RL=120,BL=2400,WP=5001

block length (is ignored under z/OS).
For output files always defined in the DD statement.

record length.
This defines an internal buffer size (default 32k).

output area clear character

After each output from an output area, QPAC clears the area to
X'00', with the exception of CD and PR files where it is cleared
to X'40' (space).

CLR= can be used to define a different clear value in character
or hexadecimal format.

CLR=NO causes the output area not to be cleared after each
output.

input area clear character at EOF time.
QPAC clears input areas at EOF to X'FF'. With cLE= a different
value can be defined in character or hexadecimal format.

file description.
This option allows a 44 bytes file description to be associated
with the file. It is shown in console messages and file statistics.

Data set name (z/OS)
May be directly specified within the file definition and makes a
corresponding DD statement obsolete.

e.g. IPF=SAM, DSN=TEST.FILE

work area position.

This definition states that the record will be written into, or read
from, the general work area. The definition refers to the
location within the work area to be occupied by the record to be
processed.

When wp= is defined, a dynamic record area does not exist
for the relevant file definition. In addition to the implicit position
symbols (IPOSn, 0OPOSn ...), WPOSnnn can be used for
addressing.

file communication area.

The FCA defines the location within the general work area
where information exchange should take place. One example of
an FCA function is the communication of record lengths. It may
also be used to pass on keys when, for example, the 'set
generic key' function is being employed.

If the FCA is not defined, it will by default be dynamically

defined and can only be addressed by attached symbol names.
The FCA has a length of 256 bytes.

QPAC-Batch Reference Manual 2-3

COBREC=bookname[/bookname] [,PRFX=YES]
PLIREC=bookname|[/bookname] [,PRFX=YES]

Cataloged COBOL and PL/I record structures

can be loaded from a source library and be associated with a
file definition. The field names are converted to QPAC symbol
names (- signs are converted to _ signs). Initial values and edit
masks are ignored.

Multiple structure names can be specified separated by a/
sign. If there is not room for all the names within the statement,
continuation on the following line is achieved by the definition
of a slash followed by a space in the current statement. The
next structure name is then defined in the following statement.
Leading blanks are allowed.

If PREX=YES is specified then every symbol name will be
prefixed by the short form of the file identification.

Based definitions are translated as QPAC based structures.
The based pointer must be loaded with the correct address
within the QPAC program. In z/OS these copy books are read
in by use of the PDS DD name QPACCOPY (QPACCOPY DD

).

Options for Tape File Definitions

opt BWD

2-4 QPAC-Batch Reference Manual

read tape files with fixed record length or “undefined”
backwards

Options for VSAM-File Definitions

opt NRS

ESD

LSR
NOLSR

RLS

FCA=

PSW=

RC=YES

BWD

no reset to empty state.

An output file will by default be treated as if having the RST
attribute, i.e. the file will be considered to be empty and will be
newly created.

The NRS option should be defined when the new output records
are to be appended to the existing records, i.e. the output file
(opPF) should not be treated as if it were empty.

entry sequenced dataset.

QPAC will find out for itself whether it is dealing with ESDS,
RSDS or KSDS. The system message ERROR X'AQ' occurs if
only VvSAM is specified as file organization, which is to be
ignored. In order to suppress this message, the ESD option can
be explicitly defined when dealing with an ESDS.

local shared resource
VSAM must or must not use a local shared resource pool

the VSAM file is classified as record level shared.

file communication area.

The FCA enables an exchange of necessary information
between the user and QPAC VSAM. At present, this
information consists of return codes, the record lengths or key
information.

FCA= defines the location within the general work area to be
used for the information exchange. A default of dynamic
allocated FCA will be assumed should the FCA not be
explicitly defined, and it may only be accessed by the
attached symbol names.

The FCA has a length of 256 bytes.

password.

This option enables a password to be defined when a dataset is
to be password protected. The password may consist of
between 1 and 8 alphanumeric characters and does not appear
on the QPAC listing.

return code/feedback code.

The VSAM return and feedback code is returned in the FCA
without QPAC being terminated in case of an error. For random
commands (READ, READGE ...) this option is the default.

The FCA field RC1 contains the binary return code, the FCA
field RC2 contains the binary feedback code. If no error
occurred, the FCA field RC contains X'0000".

At EOF X'0804' is returned.

After SETGK X'0804' is returned (if exists).

After SETEK X'0810' is returned (if exists).

Read backwards.

The VSAM file is read backwards. This option is valid for ESDS
with fixed record length and KSDS.

QPAC-Batch Reference Manual 2-5

Options for Print File Definitions

opt RL=

LRECL=

LCT=

IPC

ASA

CCH

CLASS=

2-6 QPAC-Batch Reference Manual

record length.

The line width for a laser printer can be extended to 500 bytes
by explicitly defining the record length. The default is 132
bytes.

line count.

A line count independent of the system line count may be
defined in the relevant print file definition. This line count only
affects the print file it is defined under.

ignore page control by print output.

Automatic page control according to the line counter is
suppressed with this definition. Also the print out of title lines
because of an existing HDR= or TITLE subroutine are
suppressed.

e.g. z/0S: OPF=PR, IPC

ASA control character for print output.
The ASA control character set will be used for the print output.

control character.

The first position in the print line contains the control character.
If ASA is defined, an ASA format will be expected, if not,
machine format is expected.

The SYSOUT class may be specified within the file definition.
The definition of a separate DD SYSOUT statement is then
obsolete:

e.g. OPF=PR, CLASS=T

File Definitions (Variable Length Records)

Three types of file definitions can be used:
e standard variable mode blocked or unblocked
e variable spanned mode blocked or unblocked

e undefined mode, unblocked only

General Format of File Definitions

z/0S: IPF[n]=[*DDname,] og-VAR [,rl,bl,opt ...]
UPF [n] og-SPN
OPF [n] og-UND

Sequential files can be defined as being on magnetic tape or disk:

SQ-type sequential, device independent
SAM-type

SD-type sequential disk

DISK-type

MT-type sequential tape

TAPE-type

PR-type printer (only og-VAR possible)

PRINT-type

PDS-type partitioned data set (z/OS)

The distinction between the three organizations is made by an additional definition:
0g-VAR standard variable mode.

A record is never longer than the block.

0g-SPN variable spanned mode.
The logical record can be longer than the block. It can extend over
more than one block. Not valid for PDS.

0g-UND undefined mode.
The physical record is read and made available.

QPAC-Batch Reference Manual 2-7

Additional Parameters for File Definitions (Variable Length)

Variable Record Lengths and Block Lengths

rl record length:
This is the longest possible record length. With VAR and SPN
the first 4 bytes of each record contain the record descriptor
word according to standard convention:

4 Bytes

rl binary X'0000'

Fig. 12: The first 4 bytes: the record description word

The first two bytes contain the record length in binary form, the
second two bytes are used by the IOCS.
The record length specification must include these 4 bytes.

bl block length:
i.e. the longest possible block length (physical record). It is
ignored in the UNDefined mode. In SPN output it is the length of
the physical records to be written.

If the block length, under VAR, is equal to or not more than 4
bytes larger than the record length, it will always be rounded up
to record length plus 4 bytes. In this case the file is considered
to be unblocked. SPN makes no distinction between blocked or
unblocked.

2-8 QPAC-Batch Reference Manual

Options with Special Importance on Undefined Length Records

opt

FCA=

In addition to the options described under fixed record lengths,
the Fca definition (file communication area) in conjunction with
UNDefined files is of particular importance.

The FCA is used to interchange the actual record length
between the user and QPAC. FCcaA= is used to define the
working storage position, within the general QPAC work area,
which serves as an information interchange for the appropriate
file. A default of dynamic allocated FCA will be assumed
should the FCA not be explicitly defined and it may only be
accessed by the attached symbol names:

e.g. OPF=SQ-UND,RL=4096, FCA=8000

For output records the record length in binary form must be put
into the field . . LENG at displacement 12 (4 bytes), before the
record is written. For input records, QPAC fills the field . . LENG
with the record length (binary) of the record just made
available.

(The FCA is meaningless for VAR and SPN, since the record
length is part of the logical record in these cases).

record

length
Pos. 01 13 17
Disp. 00 12 16
Symbol: . .LENG, BL4

Fig. 13: File Communication Area (FCA)

The symbol . .LENG is attached to the length field in the FCA.

QPAC-Batch Reference Manual 2-9

General Hints on File Definitions

An update file definition is the equivalent of an input and an output file
definition. The file id number assigned to such a file may therefore not be
given to any other file.

A DUMMY DD statement in z/OS job control is accepted by QPAC. It is also possible
to define a DUMMY in QPAC as follows:

e.g. IPF=DUMMY
OPF=DUMMY

These statements ensure the building up of the normal logical file control mechanism
as would be the case if a physical file were present.

IPF=DUMMY does not result in the same conditions as under z/OS job control.
IPF=DUMMY never produces an EOF status. An EOF status can be achieved by
adding a LIPF= statement to this file, or by giving a CLOSE-TI instruction. The input
area assigned is then cleared to X'FF' or to the value specified in CLE=.

Under z/OS, record length and block length can be defined by QPAC file definitions,
but the block length is ignored. The record length is used for the size of the internal
buffer. Job control specifications are decisive for the dataset.

If record lengths are defined through both mediums, the QPAC length must not be
less than the JCL length, since QPAC has already built up an internal 1/O area based
on its file definitions. If the record length is missing in the QPAC file definition, an 1/0
area of 32K is reserved.

After each PUT the output area is normally cleared, whether the output records are

processed in a dynamically allocated 1/0O area or in a working storage area defined
by wp=. The clearing of the output area can be suppressed by the CLR=NO option.

2-10 QPAC-Batch Reference Manual

General Points on VSAM

1.

In the file definition, no distinction is made between ESDS, KSDS and
RRDS. This information, together with any key length and key position
information, is obtained by QPAC from the cluster definition in the VSAM
catalog.

It is possible to process VSAM files with variable record lengths. The
necessary communication is established through the FCA. The storage
position of the FCAs can be defined as an option to the file definition,
otherwise it will dynamically be allocated:

e.g. IPF=VS, FCA=9000
OPF=VSAM

e After each GET instruction (for output), the actual logical record length
of the record supplied to the user is stored in binary form in the 4
bytes of the FCA, reserved for r1.

When updating, this length should not be modified.
The symbol . .LENG is attached to the length field in the FCA.

e Before a PUT instruction, the actual logical record length of the record
to be written can be placed in binary form into the 4 bytes of the FCA
(r1 positions). If the FCA contains binary zeros, the maximum length
is taken from the cluster definition.

The symbol . .LENG is attached to the length field in the FCA.

The r1 definition within the file definition is only used for the internal
reservation of a buffer area. If the storage partition is large enough, the r1I
definition may be omitted, in which case an area of 32760 bytes is
reserved. For information purposes, QPAC states the largest encountered
record length at the end of processing.

VSAM: RC record key
length
Pos. 01 13 21
Disp. 00 12 20
..RC,CL2 . .LENG, BL4 ..KEY,CL236

Fig. 14: File Communication Area (FCA)

QPAC-Batch Reference Manual 2-11

General Points on Variable Record Lengths

1. Updating of VAR, SPN or UND disk files is supported. The actual record
length may not be altered.

2. In processing, there is no difference between VAR and SPN. The only
difference is in the file definitions, which are based on different forms of
physical storage.

3. Under z/OS, the record format 'variable' 'spanned’ or 'undefined' is taken
from the job control and need not be given in the file definition. Where the
record format is given in the file definition, this format will be the one
used, and will not be overwritten. The default is 'fixed'.

4, SPN 'spanned' is not supported for z/OS partitioned data sets.

2-12 QPAC-Batch Reference Manual

Dynamic File Allocation for z/OS

For the z/OS environment QPAC additionally supports the . Three different definition
types and one additional command category are supported:

1. JCL static allocation

2. JCL dynamic allocation
3. Full dynamic allocation
4. Data set only commands

With JCL static allocation the DD statement is dynamically created.

The corresponding DSN and the DD name are a predefined part of the QPAC file
definition.

JCL static allocation allows implicit and explicit file definitions.

e.g. IPF=PDS,DSN=INPUT.DATASET

Fig. 15: JCL static allocation

With JCL dynamic allocation the DD statement is dynamically created.

The file organization and certain options are defined with the file definition but not
the DSN and if required the DD name.

JCL dynamic allocation only allows the explicit file definition.

e.g. IPF1=VSAM, DYNAMIC
IPF1=VSAM, DSN=DYNAMIC

Fig. 16: JCL dynamic allocation

With full dynamic allocation only a file definition skeleton is defined in the QPAC
program. The completion of the file definition is done dynamically during execution
time. Therefore, the file organization and all necessary additional information such
as record length, block length, storage medium etc. in addition to DSN and DD name
(if required) must be specified.

e.g. OPF1=DYNAMIC

Fig. 17: Full dynamic allocation

With print files a further differentiation exists. If a DSN is defined the output is written
to a data set on DASD or tape, according to the medium specified. Default is DASD.
But if a class (..CLASS =) is defined a SYSOUT DD statement is allocated. If both
DSN and CLASS are present SYSOUT is prefered.

Data Set only Commands belong to a command category which allows to get
information about a data set before allocation effectively is done. A group of
reserved field symbols is associated with it whose names are all beginning with the
prefix ANY. ..

QPAC-Batch Reference Manual 2-13

Basic Format of File Definition for JCL Static Allocation

>>—T—IPF([n]= og,DSN=Data Set Name ><
_I:UPF[HJ=-—| L*DDnameFJ L,opt J
og = VSAM
SAM SQ-VAR SQ-UND
PDS
PDSE

opt = additional options

>>—OPF [n]=PR,CLASS=x ><

Basic Format of File Definition for JCL Dynamic Allocation

>>—T1PFn= og,DYNAMIC ><
_EUPFn—j I—*DDname,J , |—,opt...J

OPFn=

og = VSAM
SAM SQ-VAR SQ-UND
PDS
PDSE
PR

opt = additional options

reserved field symbols for print ouput OPFn=PR
if the output is written to SYSOUT:

OnCLASS = SYSOUT CLASS
OnDEST = Destination
OnFORM = Form Number

The same field symbols are valid for print data set output to DASD or TAPE
as they are described under non-print output.

example: OPF1=PR, DYNAMIC,RL=132,BL=26100

SET O1DDN = 'LISTFILE'
SET O1DSN = 'PRINT.FILE.OUTPUT'
ALLOC-01

2-14 QPAC-Batch Reference Manual

Basic Format of File Definition for Full Dynamic Allocation

>>—IPFn= DYNAMIC ><
—EUPFH=}_ |—,opt...J

OPFn=

the file organization must be filled into the field . . DSORG:
PS or SQ, PO, PE Or VS

reserved field symbols for full dynamic:

. .DSORG = data set organization:
pPs = SAM, po = PDS, pE = PDSE, vs = VSAM
. .VOLID = volume id: e.g. for tape, 'SCRTCH' is valid for OPFn=

full dynamic allocation for data sets whose organization is not yet predefined
can only be used with explicit file definitions.

The definitive organization is allocated with the ALL.OC-.. command.
Therefore, the reserved filed symbols shown in the following examples must be
filled in advance.

examples: IPF1=DYNAMIC OPF1=DYNAMIC
SET I1IDSN = ... SET O1DSN =
SET I1DSORG SET O1DSORG =
SET I1RECFM “e SET O1SDISP =
SET I1RL = ... SET OINDISP =

SET I1BL = ... SET O1CDISP =
ALLOC-I1 SET O1RL =
SET O1BL =

SET OlUNIT =
SET O1RECFM
SET Ol1LABEL
ALLOC-01

Additional Commands for JCL Dynamic and Full Dynamic Allocation

ALLOC-In Allocate Data Set
-Un
-0On
UNALLOC-In Unallocate Data Set
-Un
-0On

The ALL.OC command must be executed before the OPEN command. The UNALLOC
command must be executed after the CLOSE command. Both commands are using
the SVC 99.

In case of any error the SVC 99 return code is returned and can be examined if
RC=YES has been defined. Otherwise, execution is terminated.

e.g. IF I1RC NOT = X'0000' THEN not ok

QPAC-Batch Reference Manual 2-15

Reserved Field Symbols for JCL Dynamic and Full Dynamic Allocation

reserved field symbols for IPF:

InDSN = 'Data set name'

InDDN = 'DDname' Defaultis IPFn

InSDISP = Status disposition: 'S' = SHR, 'O'=0OLD

InNDISP = Normal disposition: 'C' = CATLG, 'K' = KEEP, 'D'=DELETE,
'U' = UNCATLG

InCDISP = Cancel disposition: 'D' = DELETE, 'K' = KEEP,
'C'= CATLG

I nMN = Member name, also possible in generic format (PDS only)

I nMEMNM = Member name, full name from PDS as SAM file

reserved field symbols for UPEF:

UnDSN = 'Data set name'

UnDDN = 'DDname' Default is UPFn

UnSDISP = Status disposition: 'S' = SHR, 'O'=0LD

UnNDISP = Normal disposition: 'C' = CATLG, 'K' = KEEP, 'D'=DELETE,
'U' = UNCATLG
UnCDISP = Cancel disposition: 'D' = DELETE, 'K' = KEEP,
'C' = CATLG
reserved field symbols for OPF (not for print output):
OnDSN = 'Data set name'
OnDDN = 'DDname' Default is OPFn
OnRL = Record length
OnBL = Block length
OnSDISP = Status disposition: 'N' = NEW, 'M' = MOD, 'O'=0OLD
OnNDISP = Normal disposition: 'C' = CATLG, 'K' = KEEP, 'D'=DELETE
OnCDISP = Cancel disposition: 'D' = DELETE, 'K' = KEEP, 'C' = CATLG
OnTYPSP = Type of space: 'C' = CYL, 'T'=TRK, 'B' = BLK,
'K'= KB, 'M'= MB
OnPRISP = Primary space: 3 or nnn
OnSECSP = Secondary space: 3 or nnn
OnDIRBL = Directory blocks for PDS: 32 oder nnn
OnRLSE = Release space: 'N'=NO or'Y' = YES
OnUNIT = Storage medium: 'SYSALLDA' or 'xxxxxxxx'
OnDCLAS = Data class name: "xxxxxxxx'
OnMCLAS = Mgment class name: 'xxxxxxxx'
OnSCLAS = Storage class name: 'xxxxxxxx'

Tape Full Dynamic Allocation

If dynamic allocation for tape output is used a DD statement must be present that will
cause the tape units to be reserved. The DD statement must contain the UNIT
parameter, the DISP parameter and if necessary the VOL parameter.

e.g. //OPF1 DD UNIT=(TAPE,2,DEFER),DISP=(MOD,KEEP,KEEP),
// voL=(,,,20)

2-16 QPAC-Batch Reference Manual

Data Set Only Commands

The following commands are related to the processing of data sets without a
necessary corresponding file defintion. They use a group of reserved field symbols
with names beginning with the prefix ANY. .. These predefined fields are necessary
for the exchange of information. This command category allows to get information
about a data set before allocation effectively is done. For example, it allows testing
whether the data set already exists and must be deleted in advance.

ANYDSN CL22 Data Set Name

ANYDDN CL8 DD Name

ANYDIRBL BL2 Directory Blocks

ANYDSORG CL2 Data Set Organization PS, PO, VS
ANYLABEL CL2 Tape Label NL,SL
ANYPRISP BL2 Primary Space

ANYSECSP BL2 Secondary Space
ANYSPTYP CL1 Type of Space in Tracks (T)
ANYRECFEFM CL3 Record format

ANYCREDT CL8 Creation date

ANYREFDT CL8 Last referenced date
ANYEXPDT CL8 Expiration date

ANYBL BL4 Block length

ANYRL BL4 Record length

ANYUNIT CL8 Unit type SYSDA or TAPE
ANYRC CL2 Return code

ANYVOLID CL6 Volume serial identification
ANYDCLAS CLS8 Data class name
ANYMCLAS CL8 Management class name
ANYSCLAS CL8 Storage class name

Neutral Commands

INQDSN-ANY Inquire Data Set

This command allows the inquiry of a data set.

The field ANYDSN must be filled with the name of the data set in advance. As a
result, the fields ANYVOLID, ANYRECFM, ANYDSORG, ANYBL, ANYRL, ANYUNIT,
ANYLABEL, ANYPRISP, ANYSPTYP are returned, if the return code ANYRC contains
X'0000'".

In case of an error the field ANYRC contains the return code (see the following list).

INQDDN-ANY Inquire Data Set via DD-Name of DD Statement

This command allows the inquiry of a data set via DD name.

The field ANYDDN must be filled with the name of the DD statement in advance.

As a result the fields ANYDSN, ANYVOLID, ANYRECFM, ANYDSORG, ANYBL, ANYRL,
ANYUNIT, ANYLABEL, ... are returned, if the return code ANYRC contains X'0000".
In case of an error the field ANYRC contains the return code (see the following list).

QPAC-Batch Reference Manual 2-17

UNCDSN-ANY Uncatalog Data Set

This command allows any data set to be uncataloged. The VTOC will still contain the
file. The field ANYDSN must be filled with the name of the data set in advance.

SMS controlled data sets will not be affected by this command and the return code is
0.

In case of an error the field ANYRC contains the return code (see the following list).

DELDSN-ANY Delete Data Set

This command allows any data set to be removed from the catalog and to be deleted
in the VTOC. Tape data sets are only removed from the catalog.

The field ANYDSN must be filled with the name of the data set in advance.

In case of an error the field ANYRC contains the return code (see the following list).

ANYRC or ..RC Return Codes

X'...0 = SVC 99 return codes
X'2560"' = definition error
X'2222' = technical cancel error
X'9999' = function code error

A PDS member selection can be dynamically defined. There are two ways to
accomplish this:

1. A single member is read as a SAM file, after the JCL priciple

DSN=fileid(member), e.g. SET I1MEMNM = 'MEMNAME'
2. A generic member selection can be defined that is sequentially read from the
PDS file, e.g. SET I1MN = 'ABC*'

All the members that are beginning with ABC are selected. The rule for the
generic definition format is the same as described under the static PDS file
definition.

2-18 QPAC-Batch Reference Manual

Chapter 3. Input/Output Instructions

Instructions Overview

System related Instructions

GETIN

PUTPCH

PUTLST

read from the system reader
punch on to the system puncher

write on the system printer

Fig. 18: Overview of system related instructions

File related Instructions

OPEN

CLOSE

-I
-0
-U

-I
-0
-U

open dataset

close dataset

Fig. 19: Overview of file related instructions

I/0 Instructions for Sequential Processing

GET

PUT

PUTA

PUTD

SETGK

SETEK

-I
-U

-I
-U

read next record

write new record
rewrite record
insert record

delete record

set key greater or equal to

set key equal to

Fig. 20: Overview of I/O instructions for sequential processing

QPAC-Batch Reference Manual 3-1

Random Instructions for VSAM Files

READ -In read random with key equal or

-Un relativ record number
READGE -In read random with key greater or equal or
RDGE -Un relative record number (range ..RRN+100)
READUP -Un read for update random with key equal or
RDUP relative record number
REWRITE -Un rewrite record previously read by READUP
RWRT
INSERT -Un add a new record
ISRT
DELETE -Un delete a record
DLET

Fig. 21: Overview of random instructions for VSAM

General Format

OPERATION-file identification

OPEN-IPF OPEN-I OPEN-0O OPEN-03
CLOSE-OPF9 CLOSE-09 CLOSE-I CLOSE-0
GET-IPF8 GET-1IS8 GET-U2 GET
PUT-OPF1 PUT-01 PUT-U1 PUT

Fig. 22: Sample I/0 instructions

The file identification can be omitted if 'implicit processing logic' is used,
i.e. file identifications have no numbers. The file identification can be coded in short
form (GET-17).

3-2 QPAC-Batch Reference Manual

File Related Instructions

The OPEN Instruction

OPEN -I[n]

An OPEN command can be given at any time but is not necessary for the first
opening of a file. A GET command automatically opens the addressed file; the GET
command however, only if the file is not already opened. The re-opening of a file can
only be accomplished by using the OPEN command.

A file identification must always be added to the OPEN function.

The CLOSE Instruction

CLOSE -I[n]
-0[n]
-Ul[n]

A CLOSE command can be given at any time, but is not necessary, since automatic
closing takes place for input files on EOF condition, and for output files at processing
end.

Repeated reading of an input file is possible by using CLOSE-I OPEN-T, even if the
file has not yet reached EOF.

A file identification must always be added to the CLOSE function.

ALLOC / UNALLOC for Dynamic File Allocation (z/OS)

ALLOC -In allocate data set
-Un
-0On
UNALLOC -In unallocate data set
-Un
-0On

Before the ALLOC instruction the provided reserved field symbols must be filled up
with the corresponding values; with IPF at least InDSN.

QPAC-Batch Reference Manual 3-3

IPF1=PDS,RL=80, DSN=DYNAMIC

SET I1DSN = 'SYSX.USER.LIB1'
ALLOC-I1
OPEN-I1

GET-I1

CLOSE-I1

UNALLOC-I1

SET I1DSN = 'SYSX.USER.LIB2'

ALLOC-I1
OPEN-I1

CLOSE-I1
END

Fig. 23: Sample command sequence for dynamic file allocation

3-4 QPAC-Batch Reference Manual

1/0 Instructions for Sequential Processing

The GET Instruction

GET [-I[n]] [AT-EOF . . . ATEND]

Through the GET command, a logical input record is made available to the user. All
input addresses in the processing instructions following the GET refer automatically
to the input area activated by that GET, but only in hierarchical order.

If the GET command refers to an update file, the following output addresses refer to
the same area.

A GET command can immediately follow an EOF control block (AT-EOF), so that it
will be executed when the EOF status is met. If the EOF control block is missing, the
whole GET block is skipped on EOF status. If the EOF control block is present, it is
executed when EOF occurs, and no GET block skip occurs. Normal processing is
resumed after the ATEND definition.

GET-11 IPF1 is at EOF
GET-I2 <4+— IPF2 is not yet at EOF
GET-TI1

P
¥

Fig. 24: Example of GET commands without EOF control block

Notice:
Any GET command on hierarchical level 0 marks the corresponding file definition as
leading file.

QPAC-Batch Reference Manual 3-5

GET-I1 ATiEOF IPF1 is at EOF
ATEND IPF2 is not yet at EOF
GET-1I2 AT-EOF
ATEND
GET-I1 AT-EOF
v
ATEND

Fig. 25: Example of GET commands with EOF control block

The PUT Instruction

The PUT command writes a logical record to an output file, or updates an 'update
file'.

After execution of the command, the output area, but not the update area, is
automatically cleared. (Clear character = X'00' resp. X'40' for card and printer output;
or CLR=X"'..").

With VSAM KSDS, DB2 and DL/l databases, two additional /O commands are
supported.

The DB2 usage is described in the SQL/DB2 Support Feature, the usage of DL/l in
the DL/l Support Feature.

The following information is concerned with VSAM datasets.

3-6 QPAC-Batch Reference Manual

The PUTA (Put Addition) Instruction

PUTA [-U[n]]

This command can only be used for update files, and not where the file definition is
for input only (I1PF=) or for output only (OPF=).

The command causes the record currently in the 1/O area to be written. The record

length, if required, can be given in the FCA. If the length in the FCA is null, then the

maximum length given in the cluster definition will be assumed. When processing

RRDS files the actual relative record number must also be set into the FCA field
.RRN.

PUTA works with the RPL for sequential processing. The positioning will be
controlled.

The PUTD (Put Delete) Instruction

PUTD [-U[n]]

This command can only be used for update files, and not where the file definition is
for input only (IPF=) or for output only (OPF=).

The command causes the last record read by a GET to be deleted.

The FCA is not used for this command.

The SETGK and the SETEK Instructions

SETGK [-I[n]]
[-Uln]]
SETEK [-I[n]]
[-Uln]]

SETGK is an extended I/O operation for files built on keys, that allows processing to
continue at, or after, a given generic key.

Processing continues with the key equal to or greater than the key given.
SETEK is an extended 1/O operation for files built on keys, that allows processing to
continue at a given equal key.

Processing continues with the key equal to the key given. The record with the same
key must be present, otherwise a 'not found' condition appears.

Before execution of the SETGK or SETEK function, the key value must be moved to

the FCA, starting at position 21 of the FCA (displacement 20). The use of positions 1
- 20 of the FCA varies according to the file organization.

QPAC-Batch Reference Manual 3-7

DL/I:

VSAM:

Pos.
Disp.

key

RC record key
length
01 13 21
00 12 20
..RC,CL2 . .LENG, BL4 ..KEY,CL236

Fig. 26: File Communication Area (FCA)

The SETGK/SETEK contains an OPEN if the current file state is "closed".

3-8 QPAC-Batch Reference Manual

Random Instructions for VSAM Files

The READ Instruction

READ-In
-Un

Read random with key equal or relative record number.

a) VSAM KSDS
The record specified by the key in the FCA field . . KEY is read.
In the FCA field . .RC the original VSAM return- and feedback code is
returned:
Position 1 (. .RC1) contains the return code X'00', X'04', X'08', X'0C' etc.
Position 2 (. .RC2) contains the feedback code X'..".

SET I1KEY = '123456"
READ-I1
IF I1RC = X'0810' THEN ... (no record found)

Fig. 27: Return code check after READ instruction

b) VSAM RRDS
The record specified by the relative record number in the FCA field . .RRN
is read.
In the FCA field . .RC the original VSAM return- and feedback code is
returned:

Position 1 (. .RC1) contains the return code X'00', X'04', X'08', X'0C' etc.
Position 2 (. .RC2) contains the feedback code X'..".

SET I1RRN = 1000
READ-I1

Fig. 28: VSAM RRDS direct access with READ

The READGE Instruction

READGE-In
RDGE -Un

Read random with key greater or equal or with relative record number (range
. .RRN+100).

QPAC-Batch Reference Manual 3-9

a) VSAM KSDS
The record specified by the key in the FCA field . . KEY or the next record
in sequence is read.
In the FCA field . .RC the original VSAM return- and feedback code is
returned:

Position 1 (. .RC1) contains the return code X'00', X'04', X'08', X'0C' etc.
Position 2 (. .RC2) contains the feedback code X'..".

SET I1KEY = '123456"'
READGE-T1
IF I1RC = X'0810' THEN ... (no record found)

Fig. 29: Return code check after READGE instruction

b) VSAM RRDS
The record specified by the relative record number in the FCA field . .RRN
or the next in sequence in the range of the next 100 slots is read.
In the FCA field . .RC the original VSAM return- and feedback code is
returned:

Position 1 (. .RC1) contains the return code X'00', X'04', X'08', X'0C' etc.
Position 2 (. .RC2) contains the feedback code X'..".

SET I1RRN = 1000
READGE-I1

Fig. 30: SAM RRDS direct access with READGE

The READUP Instruction

READUP-Un
RDUP

Read for update random with key equal or relative record number.

a) VSAM KSDS
This function is the same as explained under READ, but the file definition
must be UPFn.

SET UlKEY = '12345¢6"'
READUP-U1

Fig. 31: Read for Update mit der READUP instruction

b) VSAM RRDS
This function is the same as explained under READ, but the file definition
must be UPFn.

3-10 QPAC-Batch Reference Manual

The REWRITE Instruction

REWRITE-Un
RWRT

Rewrite the record previously read by READUP.

a) VSAM KSDS
The record in the record area is written back (updated).
In the FCA field . .RC the original VSAM return- and feedback code is
returned:
Position 1 (. .RC1) contains the return code X'00', X'04', X'08', X'0C' etc.
Position 2 (. .RC2) contains the feedback code X'..".

SET UlKEY = '12345¢6"'
READUP-U1
SET UlP0OS20,CL7 = 'NEUWERT'

REWRITE-U1
IF UIRC1 <> X'0O0' THEN ... (any error condition occurred)

Fig. 32: Update a record with REWRITE after READUP

b) VSAM RRDS
The record in the record area is written back (updated).
In the FCA field . .RC the original VSAM return- and feedback code is
returned:
Position 1 (. .RC1) contains the return code X'00', X'04', X'08', X'0C' etc.
Position 2 (. .RC2) contains the feedback code X'..".

The INSERT Instruction

INSERT-Un
ISRT

Insert a record.

a) VSAM KSDS:
The record in the record area will be inserted. The key within the record is
relevant.
In the FCA field . .RC the original VSAM return- and feedback code is
returned:

Position 1 (. .RC1) contains the return code X'00', X'04', X'08', X'0C' etc.
Position 2 (. .RC2) contains the feedback code X'..".

b) VSAM RRDS:
The record in the record area will be inserted into the empty slot.
The relative record number (RRN) must be stored into the field . .RRN in
advance.
In the FCA field . .RC the original VSAM return- and feedback code is
returned:
Position 1 (. .RC1) contains the return code X'00', X'04', X'08', X'0C' etc.
Position 2 (. .RC2) contains the feedback code X'..".

QPAC-Batch Reference Manual 3-11

SET UIRRN = 5
INSERT-U1

IF UIRC1 <> X'00' THEN ... (any error condition occurred)

Fig. 33: Insert a record with INSERT

The DELETE Instruction

DELETE-Un
DLET

Delete a record.

a) VSAM KSDS
The record whose key is stored in the field . .XEY will be deleted.
In the FCA field . .RC the original VSAM return- and feedback code is
returned:
Position 1 (. .RC1) contains the return code X'00', X'04', X'08', X'0C' etc.
Position 2 (. .RC2) contains the feedback code X'..".

SET UlKEY = '123456"
DELETE-U1
IF UIRC1 <> X'00' THEN ... (any error condition occurred)

Fig. 34: Delete a record with DELETE

b) VSAM RRDS
The record whose relative record number is stored in the field . . RRN will
be deleted.
In the FCA field . .RC the original VSAM return- and feedback code is
returned:

Position 1 (. .RC1) contains the return code X'00', X'04', X'08', X'0C' etc.
Position 2 (. .RC2) contains the feedback code X'..".

SET UIRRN = 5
DELETE-U1

IF UIRC1 <> X'00' THEN ... (any error condition occurred)

Fig. 35: Delete a record with DELETE

3-12 QPAC-Batch Reference Manual

Printer File related Instructions

As well as the PUT command, the following output commands can be used for printer

files:
WNSP [-O[n]] write no space (ASA)
W write and 1 space
WASP1 write and 1 space
WASP2 write and 2 spaces
WASP3 write and 3 spaces
WASK1 write and skip to channel 1
WASK2 write and skip to channel 2
WASK3 write and skip to channel 3
WASK4 write and skip to channel 4
WASK5 write and skip to channel 5
WASK®6 write and skip to channel 6
WASK7 write and skip to channel 7
WASKS8 write and skip to channel 8
WASK9 write and skip to channel 9
WASK10 write and skip to channel 10
WASK11 write and skip to channel 11
WASK12 write and skip to channel 12 (ASA)
SP1 immediate 1 space
SP2 immediate 2 spaces
SP3 immediate 3 spaces
SK1 immediate skip to channel 1
SK2 immediate skip to channel 2
SK3 immediate skip to channel 3
SK4 immediate skip to channel 4
SK5 immediate skip to channel 5
SK6 immediate skip to channel 6
SK7 immediate skip to channel 7
SK8 immediate skip to channel 8
SK9 immediate skip to channel 9
SK10 immediate skip to channel 10
SK11 immediate skip to channel 11
SK12 immediate skip to channel 12

Fig. 36: Instructions overview for printer files

W-OPF1 SP1-02
W-01 WASK1-03
SK1-02

Fig. 37: Sample instructions for printer files

The output area is not cleared by an immediate command.

QPAC-Batch Reference Manual 3-13

PDS related Instructions (z/OS)

The special command explained below is available for cataloging member names
into a PDS directory:

The name of the member last created is taken from the FCA field . . MEMNM and the
member is cataloged into the PDS directory.

If the FCA field . . STOWID contains an 'A' the member must not already exist.

If it contains an 'R’ an existing member with the same name will be replaced.

If it contains no invalid code, then 'A' is assumed.

Additionally for updating the statistical records in the directory record the version

modification and/or the user id can be specified. Therefore the following reserved
field symbols are available: . .sTowvv,STOWMM andSTOWUSER.

3-14 QPAC-Batch Reference Manual

System related Instructions

The GETIN Instruction

GETIN

This read command reads in a record from the in-stream file (QPACIN).

Data that follows the END statement of QPAC are read, without further file definition,
into working storage positions 5001 - 5080.

At EOF, that area is set to high-value (X'FF").

The PUTLST Instruction

PUTLST

PUTLST-'literal'

PUTLST-symbolname[, 1]

PUTLST-'literal', symbolnamel[,1],"'literal'...

This write command writes a line to the system printer (QPACLIST) without needing
further file definitions. Working storage positions 5201 - 5320 contain the line to be
written as far as no literal or field symbol have been specified. Position 5200 is
reserved for the storage of an ASA control character (default value is blank).

Before the first PUTLST from working storage position 5201-5320, a page skip is
effected. The output area is not cleared automatically.

A width of 121 positions will be assumed for a print line (including control character).
The PARM option LISTL= (list length) enables the width of the print line to be
extended to 250 positions.

Multiple operands can be defined, separated by comma, literals or field symbols. The
length of their contents must not be longer than 120 bytes.

The PUTPCH Instruction

PUTPCH

This punch command punches one card on the system punch (QPACPUN).
Working storage positions 5101 - 5180 contain the record to be punched.

The punch area is not cleared automatically.

QPAC-Batch Reference Manual 3-15

Titles for Printer Files

The HEADER Definition (Static Title Lines)

HDR=
HDR-On=

A print output title line is defined by a pair of HDR definitions.
The first HDR defines print positions 1-66, the second HDR defines print positions 67-

132.

The sequence of the HDR definitions dictates the sequence of the title lines.

HDR definitions with file identification number (HDR-01) can only cover print positions
1-65 or 68-131.

@ Please note that the TITLE routine (described on the next page) can
be used instead of the static HDR definitions. If both, HDR and TITLE
are defined for the same print file, HDR is ignored.

ﬂ@ Please note that if the file definition parameter 1PC is specified, no title
lines are produced.

3-16 QPAC-Batch Reference Manual

The TITLE Definition (Dynamic Title Lines)

As well as the possibility of defining static title lines by the means of DR, dynamic
title lines, whose contents can be altered during execution, can also be defined.

TITLE TITLEND
TITLE-On TITLEND

TITLE to TITLEND is a subroutine structure block that is executed automatically at
'title time".

'Title-Time' is: e immediately before writing the first print line
e when the line counter maximum is reached
e immediately before an SK1 or a WASK1 command

The key word TITLE (with file identification if using explicit processing logic) marks
the beginning of the routine structure block, and TITLEND its end.

The TITLE definition implicitly contains a skip command to the new page, and an
output address assignment to the printer output area. The cleared printer output area
is made available to the user. The implicit assignment of an input area is not
uniquely defined at title time.

When using printer file definition for implicit processing logic (OPF=), the TITLEND
definition contains a write command (w). It is however possible to explicitly specify
additional write commands within the routine, if several title lines are to be
written.

The address assignment after TITLEND is the same as that before TITLE.

The TITLE routine structure block can be placed anywhere within the QPAC
definitions, but only after the respective printer file definition.

J IPRPIE=, ;o

OPF=PR
TITLE
SET OPOS20 = 'TITLE LINE 1°'
SET OPOS90 = 'DATE:'
SET OPOS96 = DATE
W
SET OPOS20 = 'TITLE LINE 2'
SET OPOS90 = 'PAGE:'
SET OPOS96,M'ZZZ9' = OPCNT
TITLEND

—| normal processing automatically skips the TITLE block

Fig. 38: The dynamic TITLE routine

Il@ Please note that if the file definition parameter 1PC is specified, no title
lines are produced.

QPAC-Batch Reference Manual 3-17

Processing Limit Definitions

General format

LIPF[n]=s-e [,s-e,s5-¢, ...]
LUPF[n]=
LOPF[n]= [,EOP]

LIDB[n]= (for data bases)
LUDB[n]=
LODB[n]=

The limitation refers to the number of records to be processed for the file.

s (start record) defines the first record to be processed
e (end record) defines the last record to be processed
LIPF=2-50 start processing with 2nd record and end after 50th

record (51st record forces EOF condition)

Fig. 39: Processing limit definition general format

An unlimited number of from-to groups can be defined in one statement.
The from-to groups can also be split into two or more statements:

LIPF=1-100,200-350
LIPF=400-1000

Fig. 40: Processing limit definition (several from-to groups)

The numbers appearing in the from-to groups must be in ascending order.

EOP forces an end of processing if the output limit is reached. If there are multiple
EOP definitions all the output limits must be reached before processing is terminated.

LOPF=50-100,EOP write records 50-100;
then end of processing

Fig. 41: End of processing when output limit is reached

3-18 QPAC-Batch Reference Manual

Special formats

LIPF[n]=-e (s=1is assumed)

LIPF[n]=s- (e=EOF is assumed)

LIPF1=-100 only records from 1 to 100 are read

LUPF3=10- only records from 10 to EOF are read for update

Fig. 42: Processing limit definition special formats

QPAC-Batch Reference Manual 3-19

Operator Communication Instructions

The WTO Instruction (Write to Operator with no Response)

WTO-sendg field[,length]
WTO-'literal'

The contents of the sending field in a length of 1ength are displayed on the
console.

A character constant can be defined as sending field.

Lower case letters are automatically translated to upper case.

WTO-WPOS5000, 10

WTO-'"MESSAGE TO OPERATOR'

Fig. 43: Operator communication - console output

The WTOR Instruction (Write to Operator with Response)

WTOR- 'literal',recvg field[, length]
WTOR-sendg field|, length],recvg field[, length]

The contents of the sending field in a length of 1ength are displayed on the system
console. The receiving field contains the operator's response.

3-20 QPAC-Batch Reference Manual

Synchronisation Instructions

ENQ-fieldname [, STEP]
ENQ-'literal' [, SYSTEM]
[, SYSTEMS]

The usage of the ENQ (enqueue) commands is basically the one of the ENQ macro
as described in the IBM literature.

The contents of the assigned field symbol or directly defined literal is divided into two
parts. The first 8 bytes are the major part or queue name, the following part is the
minor part or resource name.

The maximum length of the literal or field is 128 bytes.

STEP, SYSTEM or SYSTEMS define the "scope" as described in the IBM literature.
Scope SYSTEMS is the default if nothing is specified.

DEQ-fieldname [, STEP]
DEQ-'literal' [, SYSTEM]
[, SYSTEMS]

The DEQ command releases any ENQed resource.

QPAC-Batch Reference Manual 3-21

Chapter 4. Static Program Structure

Automatic Processing Control

NORMAL (optional)
LAST (optional)
END (necessary)

Processing can be structured into major control sections by these three keywords.

The END Instruction
The END statement is a control instruction for the QPAC assembler.
It declares the physical end of all definitions. Information following on the same line
as the END command is ignored. Following records are considered to be either data

or JCL records.

If only the END statement is defined, the whole QPAC program consists of one main
processing part:

repeated
main processing part

—— END

Fig. 44:The END statement is the physical end of all definitions

The END statement can be coded anywhere between positions 1 and 71:

e.g. IPF=VS OPF=VS SET OPOS1 = IPOS1,CL80 END

QPAC-Batch Reference Manual 4-1

The NORMAL Instruction

If in addition to the END statement a NORMAL statement is defined, the preceding
program part will become a single processed introduction part. The repeatedly
processed main part follows the NORMAL statement:

single processed
introduction part
v
NORMAL
—>
repeated
main processing part
END

Fig. 45: Preprocessing with the NORMAL instruction

The LAST Instruction

For performing a termination routine when end of normal processing is reached,
(usually EOF), the LAST statement can be coded. The instructions following LAST
are executed only once, at termination time:

—>
single processed
introduction part

— LAST

repeated
main processing part
v
END

Fig. 46: End processing with the LAST instruction

4-2 QPAC-Batch Reference Manual

The FIRST Instruction

It is possible to define several processing sequences with the FIRST instruction:

—>

|
|

—>

NORMAL

LAST

FIRST

GOBACK | —

NORMAL

LAST

END

Fig. 47: The FIRST instruction allows several processing sequences

QPAC-Batch Reference Manual 4-3

All these keywords must be placed on hierarchical level 0, i.e. all IF, SUB and DO
blocks must be terminated by their own xxEND definitions. If this is not the case and
any structure blocks remain open, when END is reached, an error is reported:

IF .
THEN
IFEND

NORMAL
IF

THEN
IFEND

DO-5
DOEND
LAST

END

DO-5
DOEND
IF .
THEN
IFEND

END

Fig. 48: Hierarchical level 0

4-4 QPAC-Batch Reference Manual

Teamwork of NORMAL, LAST, END with Implicit Logic

If IPF or UPF are available as implicit file definitions, the NORMAL statement
contains a GET command.

NORMAL GET

Fig. 49: Generated GET within NORMAL with implicit logic control

If OPF or UPF are available as implicit file definitions, the LAST statement or, if LAST
is not specified, the END statement contain a PUT command.

LAST PUT
or

Fig. 50: Generated PUT within LAST or END with implicit logic control

Further detailed explanation is given in chapter "Internal Logic Control".

QPAC-Batch Reference Manual 4-5

Program Logic and Jump Instructions

The GOSTART Instruction

This keyword instruction causes an immediate branch to the absolute beginning. The
current state of the internal working storage area is unchanged.

beginning of program —

NORMAL
IF
THEN

GOSTART
IFEND

Fig. 51: The GOSTART instruction

The GOBACK Instruction

This keyword instruction causes the immediate return to the logical beginning of the
processing instructions (beginning of the main processing part).

If the keyword NORMAL is missing, the start of processing is the return point. If the
keyword NORMAL is present, then this is the GOBACK re-entry point.

beginning of program <———

NORMAL =
I .
THEN

GOBACK
IFEND

Fig. 52: The GOBACK instruction

4-6 QPAC-Batch Reference Manual

The GOLAST Instruction

This instruction effects a branch behind the next LAST statement or, if no LAST has
been coded, to the END statement.

IF
THEN

GOLAST
IFEND

LAST

A

A

END

Fig. 63: The GOLAST instruction

The GO TO Instruction

This jump command can be used to jump user defined labels. It should be noted
that the label itself must lie on hierarchical level 0. The label is an alpha-numeric
symbol, of a maximum length of 8 characters, of which the first must be a letter. The
label definition is terminated by a colon.

IF .
THEN
GO TO LABEL1l
IFEND
LABELl: <

Fig. 54: The GO TO instruction

QPAC-Batch Reference Manual 4-7

The GODUMP Instruction

This instruction causes processing to be terminated and a dump produced.

IF FIELD NOT PACKED _
THEN

GODUMP
IFEND

v

Fig. 565: The GODUMP instruction

The GOABEND [,nn] Instruction

This keyword instruction effects immediate termination of processing (CANCEL).
An abend code 1 - 4095 can be defined, default value is 12.

ITF WPOS6010,PL8 <> O
THEN

GOABEND, 16
IFEND
END

inspect abend code in JCL

A

Fig. 566: The GOABEND instruction

The GOEND [,nn] Instruction

This keyword instruction causes the end of execution. A return code (condition
code) 1 - 4095 can be defined.

GET-I1 AT-EOF GOEND ATEND
|

END <

Fig. 57: The GOEND instruction

4-8 QPAC-Batch Reference Manual

Chapter 5. Internal Logical Control

Implicit Processing Logic

Using implicit processing logic, several processes such as OPEN, CLOSE, GET,
PUT (or w for printers) are automatically generated. The user need only define the
file definition and the data handling instructions.

QPAC operates with implicit processing logic, if file identifications are not appended
by a number:

IPF= PFl=
OPF= OPX[=
UPF= PF1=

Fig. 58: Implicit processing logic with file definitions without numbers

Therefore, only one input and/or one output file or an update file respectively are
normally defined.

Implicit processing logic is for processing single file applications in an easy manner
without considering 1/0O operations. The user however can use I/O operations in
addition to the logic generated as follows:

e Under implicit control, the IPF or UPF definition contains the read command
GET.

e When an OPF or UPF definition is present, the END statement contains a PUT
command.

o |f NORMAL is defined, it contains the implicit GET command, which is thereby
removed from the previously stated IPF or UPF definition.

o |If LAST is defined, it contains the implicit PUT command, which is thereby
removed from the later defined END statement.

e Before a NORMAL command, input records must be read explicitly with a GET.

e Following a LAST command, all output records must be written explicitly with
a PUT or a w.

e The automatic logic for printer files includes the page skip with printing of any
title lines, as well as line printing and line advancing.

QPAC-Batch Reference Manual 5-1

user definitions: QPAC generated logic:

at begin-of-file OPEN-TIPF,
GET-IPF,
IPF= at end-of-file CLOSE-IPF and
OPF= skip GET block
—» UPF=
at begin-of-file OPEN-OPF
SET OPOS1 = IPOS1,CL80
PUT-OPF,
clear output area,
— END GOBACK

at end-of-file CLOSE-OPF
and end of processing

/

Fig. 59: Generated logic with implicit processing

user definitions: QPAC generated logic:

at begin-of-file OPEN-IPF

IPF=
OPF=
UPF= at begin-of-file OPEN-OPF
v GET-IPF
—» NORMAL) ’
at end-of-file CLOSE-IPF and
GOLAST
SET OPOS1 = IPOS1,CL80
v PUT-OPF,
— LAST clear output area,
GOBACK
¥ END at end-of-file CLOSE-OPF

and end of processing

Fig. 60: Generated logic with implicit processing with NORMAL and LAST

5-2 QPAC-Batch Reference Manual

Explicit Processing Logic
Under explicit processing logic the input and output commands must be explicitly
defined.

With the exception of OPEN and CLOSE and printer page skips, no further 1/0
automatic coding is generated.

QPAC operates under explicit logical control if file identifications are appended by a
number (from 1 to 99):

PF= IPFl=
OB OPF1l=
PF= UPF1l=

Fig. 61: Explicit processing logic with file definitions with numbers

UPF excludes IPF and OPF with same numbers.

Explicit control permits the processing of several input and/or output files at the
same time. The necessary I/O statements contain the file identification as part of the

format.
OPEN-IPF1 OPEN-1I3
GET-IPF3 PUT-02
CLOSE-I1 CLOSE-IPF3

Fig. 62: 1/O instructions with explicit processing logic

user definitions: QPAC generated logic:
IPFl=
IPF2= at begin-of-file OPEN-IPF1,
—» OPFl= at end-of-file CLOSE-IPF1 and
skip GET block
GET-I1

SET 0O1POS1 I1P0OS1,CL40

at begin-of-file OPEN-IPF2,
at end-of-file CLOSE-IPF2 and
skip GET block

GET-I2
SET 01P0OS41 = I2POS1,CL40

PUT-01
GOBACK
at end-of-file CLOSE files
v and end of processing
— END

Fig. 63: Generated logic with explicit processing logic

QPAC-Batch Reference Manual 5-3

The Get Block Concept

The following rules apply if several input files are used:

All statements that follow a GET instruction form a logical unit called a GET
block.

If the execution of the GET instruction leads to EOF the whole GET block is
skipped. The GET block is also skipped if a GET instruction is to be executed
on a file that is already in an EOF state.

Processing comes to an end if all leading input files have reached EOF
status.

If a GET command is immediately followed by an AT-EOF, this EOF block that
is terminated by an ATEND, is processed when EOF state occurs. In this case
the GET block will not be skipped.

Input files are considered to be leading if they have GET instructions on
hierarchical level 0, i.e. if they have GET instructions not exclusively in IF or
DO blocks or SUBroutines.

Input files with all GETs not on level 0 are considered to be condition
dependent, and do not influence logical control.

GET blocks are terminated by NORMAL, LAST, END, a new GET instruction,
ELSE, IFEND, DOEND Oor SUBEND.

This means, that if skipping of a GET block occurs, it results in a branch to
the respective block termination point:

In the NORMAL section to the next GET or LAST or END, in the LAST section to
the next GET or END, in an IF block to the next GET or IFEND, in a DO block
to the next GET or DOEND, etc.

Within a GET block the input addresses are implicitly assigned to the
input file addressed in the GET instruction, if the old limited QPAC basic
instruction set is used.

Please note that within IF's or DO' s, this need not necessarily be the same
file as after the respective TFEND/DOEND.
See Appendix A: Basic Instruction Formats.

If symbols - implicit or explicit - are used, this rule is meaningless.

5-4 QPAC-Batch Reference Manual

IPF1l=
IPF2=

processing

GET-I1

GET-I2

GET-I1 ———

l

END

IPF1 is not at EOF

IPF2 is at EOF

GET block of 1PF1 is processed

GET block of IPF2 is skipped,
because 1PF2 is at EOF

GET block of IPF1 is processed

Fig. 64: EOF control without AT-EOF definition

IPF1l=
IPF2=

processing

GET-I1

GET-I2 AT-EOF

ATEND

GET-I1

END

IPF1 is not at EOF

IPF2 is at EOF

GET block of 1PF1 is processed

The EOF block of IPF2 is processed,
because 1PF2 is at EOF

afterwards the GET block of IPF2 is

processed if no branch instruction is
defined within the EOF block

GET block of 1PF1 is processed

Fig. 65: EOF control with AT-EOF definition

QPAC-Batch Reference Manual 5-5

Chapter 6. Field Definitions and Symbol Associations

Overview and Hints

The individual fields in the record structures of the datasets can be assigned to a
symbol. Furthermore, in the internal working storage and in the hiper space, any
number of fields with symbols can be defined, to be used as temporary storage.
When naming these symbols, it should be noted that there are reserved symbol
names, which are pre-defined internally by QPAC. The symbols used have their field
length and format defined. QPAC uses this information to be able to automatically
carry out any necessary field conversion for instructions.

The Internal Working Storage Area (Below the 16 MB Line)

Per default an internal working storage area of 32767 bytes is at the disposal of the
QPAC user, to store or accumulate data, which can be used at a later time.

The area is accessed using addresses from WPOS1 - WP0S32767.

In this manual, these address values are indicated by wadr. This area can be
enlarged up to a maximum of 16 MB with PARM=WORK=. A WORK area that is larger
than 1 MB is allocated above the 16 MB line.

At QPAC initialization time the area is formatted as follows:

1 - 4999 not preformatted
5000 - 5999 Low Value X'00'
6000 - 6999 all 10 bytes as follows:

X'000000000000000C4040

7000 - 7999 Blank X'40'

8000 - 8999 High Value X'FF'
9000 - 9999 Low Value X'00'
10000 - 32767 not preformatted

Fig. 66: The preformatted internal working storage area

QPAC-Batch Reference Manual 6-1

The Internal Hiper Space (Above the 16 MB Line)

This area is accessed using the addresses HPOS1 - HPOSnnnnn.

The External Area (located outside the QPAC program)

This area is accessed using the addresses XPOS1 - XPOSnnnnn.

The description of this external area is found in Chapter 9. Subroutines and External
Programs.

Implicit Symbol Association

QPAC recognises the position symbol and reserved symbol names, which have a
fixed definition internally.

W POS nnnnn ——»

nn ——

Examples: WPOSnnnn
HPOSnnnn
EPOSnnnn
XPOSnnnn
01POSnnnn
I2P0OSnnnn
UPOSnnnn

Fig. 67: 1/O Instructions with explicit processing logic

Implicit position symbols are nothing other than direct position addressing in symbol form.
Position addresses for the work area, the hiper space and the external area are differentiated
from those for the 1/O area.

Position addresses e.g. for the internal working storage area generally begin with WpP0S
followed by the position details.

Position addresses for specific file areas begin with the short form of the file
identification preceding the word P0OS, with the position details following.

6-2 QPAC-Batch Reference Manual

OPOS11 (position 11 of record area OPF=)

UPOS1 (position 1 of record area UPF=)
WPOS6000 (position 6000 of internal work area)
HPOS300 (position 300 of hiper space)
I1POS50 (position 50 of record area IPF1=)
02P0S30 (position 30 of record area OPF2=)

Fig. 68: Implicit position symbols

Each symbolic position address must normally have its field format and length
stated, separated by a comma, within the instruction using it.

WPOS6000, PL8

SET 01P0S102,CL2 = X'0000'
U2P0S114,75

WP0OS5120,2ZL4 = O1PCNT

Fig. 69: Explicit definition of field formats

QPAC-Batch Reference Manual 6-3

Explicit Symbol Association

Field definitions that are assigned to a specific area (an I/O area, the internal
working storage area, the hiper space or the external area) are differentiated from

single fields and literals. Single fields are not assigned to any specific area. They are

allocated somewhere in the dynamic main storage and are used for simple work

fields.

Definitions for a specific area are assigned a position address from 1 to nnnnn (end

of area). Single Fields and Literals are assigned a position address 0.

Furthermore (except for I/O areas) an identifier is set after the position address
which specifies the type of area or whether it is a single field or a literal.

nnnnW=symbol
nnnnH=symbol
nnnnE=symbol
nnnn=symbol

OL=symbol, value

0S=symbol, format-

length

addresses the internal working storage area
addresses the hyperspace

addresses the EXCIl communication area
addresses the I/O area of the preceding file
definition

addresses a single field

addresses a literal

Fig. 70: Explicit symbol types

Basic Format of Explicit Symbol Association for Single Fields and Literals

A}

C A}

CLn'

VLn'

Xl
XLn'

Z'nnnnn'
ZLn'nnn'

P'nnnnn'
PLn'nnn'

BLn'nnn'

OL=symbol, format-length,value literals

0S=symbol, —— format-length[,value] single fields

character literals

! variable character

! hexadecimal literal

zoned decimal literal

packed decimal literal

binary literal

! bit literal

is a special format as a bit literal if no length attribute is
specified. It has a fixed length of 8 bits (1 byte) and can
only contain zeroes and ones.

Fig. 71: Basic format explicit symbol association for single fields and literals

6-4 QPAC-Batch Reference Manual

Basic Format of Explicit Symbol Association for Areas

, format-length
position address =symbol
A ,M'edit mask'
W —
H
| E _|
L X _| name of max 30 chars.

Fig. 72: Basic format explicit symbol association for areas

nnnnH=SYMBOL, VLn
nnnnE=SYMBOL, PLn
nnnnn=SYMBOL, CLn
nnnnn=SYMBOL,M'ZZZ72729-"
nnnnn=SYMBOL,M'-Z27727Z9"

position address=symbol —j —— blank —»
r —C nn
—V — Lnn —
I —
— p —
L 5 —
— M'edit mask' —
examples: nnnnW=SYMBOL, BLn

Fig. 73: Diagram explicit symbol definition

The position address of the symbol (may be accompanied by w for the internal
working storage, H for the hiper space or E for the external EXCI area) is defined to
the left of the equals sign, the symbol itself on the right. Blanks are not allowed

either to the left or right of the equals sign.

A length and field format can be defined after the symbol. The length is defined in

bytes.

Five field formats are supported:

» CLn or + Cn character (1 —9999999)
+ VLn or ¢ Vn variable character (2 -32767)

, ZLn or ¢+ Zn zoned decimal (1 -20)

, PLn or + Pn packed (1-16)

, BLn or , Bn binary (1-28)

Fig. 74: Field formats for conversion instructions

QPAC-Batch Reference Manual 6-5

Important with variable character fields (Vn):

Every variable character field is automatically preceded by a 2 bytes binary field.
This length field has the same symbol name but with an appended # sign.

V means a character attribute and cannot be defined as a literal.

1=RECORDTYPE, CL1

5010=ARTICLE,CL30 (w is assumed if value is outside the 1/0
area size)
5010W=ARTICLE, CL30
7100=QUANTITY, P5 (w is assumed)
1H=HIPERFIELD, CL5 (hiper space)
1E=EXCIFIELD, BL2 (CICS EXCI communication)

1X=EXTERNALFIELD, CL100 (QPAC as a sub routine)

Fig. 75: Sample explicit symbols with field formats

Instead of a field format, an edit mask can be defined for a numeric value, the mask
defining the length of the value. The number of numerals is defined by 9, and where
leading zero suppression is required, a Z is used instead of a 9.

The mask can be terminated with a — or a + character.

A + character remains unchanged when the value is positive and is replaced by a —
character when the value is negative.

A — character is replaced by blank when the value is positive and remains
unchanged when the value is negative.

A — character can also be defined on the left side of the mask. It then becomes a
sliding negative sign.

The whole mask is contained within apostrophes and a leading attribute M.

10=TOTAL,M'Z%Z.Z%%9,99-"
10=TOTAL,M'-Z2Z.%2%29,99"
80=ORDER_TIME,M'99:99:99"

Fig. 76: Numeric explicit symbols with edit masks

Symbol names can be alphanumeric. They must begin with an alpha character and
can contain the $ # @ _ special characters.

Remember the existence of reserved symbol names.

Simplified Format of Explicit Symbol Association

A simplified form of field structures can be defined.

Fields without a position definition can be directly appended to a preceding position
definition with a leading equal sign.

The pseudo symbol FILLER can be used as a place holder.

1=RECORDTYPE, CL1
=ARTICLE, CL30
=QUANTITY, PL3
=PRICE, PL5
=FILLER, CL3
=LOCATION, CL1

Fig. 77: Simplified format of explicit symbol association

6-6 QPAC-Batch Reference Manual

Redefines in Structures
Within a structure an individual field may be redefined by prefixing the equals sign
(without a position definition) with an R (R=).
The Redefine (R=) always starts at the beginning of the preceding field.

Work area structure:

100W=PACKED_ FIELD, PL5
=BINARY FIELD,BL4
=DATE FIELD,CLS8
R=YEAR, CL4
=MONTH, CL2
=DAY,CL2

Fig. 78: Redefining work area structures

Single field structure:

0S=FIELD,CL14
R=FIELD1,CL1
=FIELD2,CL1
=FIELD3,CLS8
R=FIELD4,CL1
=FILLER,CL6
=FIELD5,CL1

0S=FIELDZ,CL5

Fig. 79: Redefining single field structures

Literal structure:

OL=LITERAL,CL10'1234567890"
R=LITERAL1,CL1
=FILLER,CL3
=LITERALS,CL6
R=LITERALS5,CL1
=FILLER,CL4
=LITERALO,CL1

Fig. 80: Redefining literal structures

Based structure:

0B=BASE, PTR
1B=BASE0, CL10
R=BASE1, ZL5
=BASE2, ZL5
R=BASE3, zL1
=FILLER, CL3
=BASES5, ZL1

Fig. 81: Redefining based structures

QPAC-Batch Reference Manual 6-7

1/0 structure:

IPF=VSAM
1=I0AREA, CL10
R=IOARE1, zL5

=IO0ARE2, ZL5
11=I0ARER, CL65

Fig. 82: Redefining I/O structures

Explicit Symbols for File Definitions

The association of the position address to the relevant record area of the file
definition must comply with the following rules:

a)

Following a file definition, the symbols will be associated with this
input/output area:

IPF=SQ
1=INPUTREC,CL80

OPF=PR
1=PRINTAREA,CL132

Fig. 83: File area association with explicit symbols

Following an input operation, the symbol positions are associated with the
area of the file referred to by the operation.

The association of symbols to the internal working storage area can occur
anywhere, as the association criteria are independent of file definitions. They
are therefore not subject to a structure block hierarchy. Position addresses
starting with 5000 are only assigned to the internal work area if the I/O area
of the preceding file definition is smaller.

The allocation rule is also influenced by the hierarchical structure, i.e. after a
structure block end, the allocation in effect before beginning that structure block is
resumed.

6-8 QPAC-Batch Reference Manual

IPF1=SQ

allocated to IPF1

IPF2=SQ
1=RECTYPE, CL2

IF RECTYPE = '20°' THEN allocated to IPF2

GET-I1

1=RECTYPE1l,CL2
allocated to IPF1

IFEND
allocated to IPF2

Fig. 84: Hierarchical structure of symbol association

QPAC-Batch Reference Manual 6-9

Explicit COBOL and PL/I Record Structure Assignment

Catalogued COBOL and PL/I record structures can be loaded from a source library
and be associated with a file definition or work area position. The field names are
converted to QPAC symbol names (- signs are converted to _ signs).

Initial values and edit masks are ignored.

Based definitions within PL/lI copy books are supported with some restrictions.

position address=COBREC=bookname
position address=PLIREC=bookname

Fig. 85: Diagram explicit COBOL and PL/I record structure association

position address can be a record position or a work area position (nnwW=).
bookname is the name of a cataloged COBOL or PL/I record structure.
COBREC= and PLIREC= are keywords.

IPF=VSAM
1=COBREC=F4000RD

7001W=COBREC=F4200RD

Fig. 86: Import of an existing COBOL record structure

Under z/OS these copy books are read in by the PDS DD name //QPACCOPY.
Important with PL/I books:

With BASE(ADDR(SYMBOL)) an additional # sign is attached to the symbol, defined
as a PTR field.

6-10 QPAC-Batch Reference Manual

BASED Structures

In QPAC based structures can be defined to easily perform table processing without
indexing the individual table elements with index registers. In the assembler
language they correspond to so called DSECTs (dummy sections).

A based structure must be preceded by a pointer field whose content must contain
the actual storage address. The fields of the following structure are addressed during
execution in relation to the pointer. The pointer content may be modified by adding
or subtracting values.

The content of the pointer field is initialized by a direct value or by another field's
address. For that case a SET special value instruction =ADR is provided which
causes the address of the sending field to be loaded into the receiving pointer.

0B=POINTER, PTR

1B=ADDRESSFIELD1,BL4
=FIELD2,PL3

8B=FIELD3,CL5

Fig. 87: Basic format of based structures
Between position address and equals sign (=) the identifier "B" is set.
It identifies a based structure.

The head of a based structure is defined by the accompanying pointer field.
Internally a pointer field is represented by a 4 bytes binary field.

SET POINTER =ADR WPOS10001

or

SET POINTER = nnnnn

Fig. 88: Loading the pointer field

SET POINTER + nnnnn
SET POINTER = - nnnnn

Fig. 89: Moving a structure

QPAC-Batch Reference Manual 6-11

Symbolic Indexed Addressing

symbol — —— blank —»
max. 3 —

——+ —— nn

——+ —— Xnn ———

nn

C Lnn

P

B

M'edit mask'

examples: symbol,formatlength QUANTITY, PL5
symboltXn QUANTITY+X1-X2
symboltn QUANTITY+5
symbol+Xn, £l QUANTITY+X1, PL4
symboltn, £l QUANTITY+5, PL5
symboltn*tXn QUANTITY+5+X1
symboltntXn, f1 QUANTITY-5+X1,BL1

Fig. 90: Diagram symbolic indexed addressing

An address modification can be made by defining an absolute value, or an index
register for the dynamic form.

Indexed addressing occurs when an index register is appended to the field symbol
with a plus or minus operator.

A maximum of 3 index registers may be appended.

SYMBOL+X1 SYMBOL-X9 SYMBOL+X6
SYMBOL-X1+X2 SYMBOL-X9-X8 SYMBOL-X6+X7+X8

Fig. 91: Indexed addressing by appending index registers

An implicit format length can be temporarily overwritten by an explicit definition.

7001=DATE_TABLE,CL72 *. 12 MONTHS
7001=INCOMING_ DATE, ZL6 *. YYMMDD
X1=0 *. INIT OFFSET X1
DO-12

SET INCOMING DATE+X1l,2ZL2 = 92 *. INIT YEAR

X1+6 *. NEXT YY
DOEND

Fig. 92: Explicit length specification overrides implicit length definition

6-12 QPAC-Batch Reference Manual

Reserved Field Symbols

Reserved symbol names are internal fields or registers available to the user, without
the user having to explicitly define them.

The following field symbols are predefined with respect to format and length and are
reserved names within QPAC-Batch.

Some field symbols contain the corresponding file identifier in their symbol
name represented by two dots (e.g. . .KEY). Replace them by any valid short
form file identifier.

Reserved Field Symbols by Group

symbol name, description, format length

Xn
ACCUn

FILLER
GPOSnnnn
WPOSnnnn
HPOSnnnn
EPOSnnnn
XPOSnnnn
I[n]POSnnnn
O[n]POSnnnn
U[n]POSnnnn
DnPOSnnnn
TnPOSnnnn
SnPOSnnn
DIVREM
DB2COMMIT

USDATE
EDATE
ISODATE
DATE
DAY
MONTH
YEAR
TIME
HOUR
MINUTE
SECOND
CDATE

CTIME
CDTIME

Index registers (n = 1-99)

accumulators (n = 0 - 99)
they are fixed in the work area positions
6000 - 6990

place holder for explicit symbol association
global work area position (nnnn =1 - 32767)
internal work area position (1 - nnnn’)
internal hiper space position (1 - nnnn)
EXCI communication area position (1 — nnnn)
external area position (1 — nnnn)

record area position nnnn of IPF [n]

record area position nnnn of OPF [n]

record area position nnnn of UPF [n]

record area position nnnn of DSn, DBn
record area position nnnn of TDn, TSn
record area position nnn of SPOn

division remainder field

DB2 auto commit counter

system date US format 'MM/DD/CCYY"
system date EURO format 'DD.MM.CCYY"
system date ISO standard 'CCYY-MM-DD'
system date 'DD.MM.YY"
day of system date DD

month of system date MM

year of system date YY
QPAC start time 'HH:MM:SS'
hour of start time HH

minute of start time MM
second of start time SS
actual current date DDMMYY
actual current time HHMMSS
current date and time DDMMYYHHMMSS

(Attention: only valid for basic instruction format)

BL4
PL8

PL8
PL8

CL10
CL10
CL10
CL8
ZL2
ZL2
ZL2
CL8
ZL2
ZL2
ZL2
PL4

PL4
2xPLA4

[os) U 0 0 0 0 W W

W W W W W W wwWwWwWwWwwm

O O OO

OO0 O0OO0OO0OO0OO0OO0OO0OO0OO0OO0oOO0oOOo

QPAC-Batch Reference Manual 6-13

symbol name, description, format length

CCDATE
CCYEAR

RC

FC

Iv
EPARM
EPARML
FUNCMSG

USERID
PRGNAME
MAPNAME
APPLID
NETNAME
CUSERID
CICSID
TERMID
OPERID
CURSOR
MAXROW
MAXCOL

JOBNAME
STEPNAME
JOBNUM
JOBACTELNO
JOBACTINFO
JOBCLASS
JOBCLASSLG

JOBPROGRNM
JOBSTIME
SYSNAME
RACFUSER

CALDRDATE
CALDRWKNR
CALDRWKDY
CALDRWARN

CALDRTXMT
CALDRTXWD

C.FCNT
. .GCNT

CCYYMMDD
CCYY

actual century date
actual century year
return code special register
special register
special register

function code
interval value

external parameter area max.

length of external parameter value
function return message

QPAC-Online user identification
QPAC-Online program name
QPAC-Online active map name
VTAM CICS application identification
VTAM terminal netname

CICS user identification

CICS system identification

CICS terminal identification

CICS terminal operator identification
cursor position after GET MAP
maximum rows on screen

maximum columns on screen

JCL job name

z/OS JCL step name

z/0OS JCL job number

z/OS Job accounting element no

z/0OS job accounting info

z/OS job class from JOB statement CLASS=

z/OS long job class from JOB statement CLASS=

or /[*MAIN CLASS=

z/OS programmer name from JOB statement
z/OS job start time hhmmss

z/0OS system name / SYSID

z/OS RACF user id

CALENDAR date format CCYYMMDD
CALENDAR number of week (01-53)
CALENDAR day of week (1-7)

CALENDAR warning for day adjustment at end of

month

CALENDAR name of month (January — December)

CALENDAR name of day (Monday — Sunday)

EXECSQL fetched counter
GET sequential read counter

6-14 QPAC-Batch Reference Manual

PL5
ZL4

BL4
BL4
BL4
CL100
BL2
CL72

CLle6
CL16
CLle6
CL8
CL8
CL8
CL4
CL4
CL3
BL4
BL2
BL2

CL8
CL8
ZL5
BL4
CL144
CL1
CL1

CL20
PL4
CL8
CL8

ZL6
ZL2
ZL1
CL1

CL10
CL10

PL8
PL8

os

U 0 W W W W@

O

U 0 0 W W W W

[ss s R v R v e) U WU o w

O O OO

w
O

OO0 O0OO0OO0OO0OO0OO0OO0OO0OO0OOo

symbol name, description, format length

. .RCNT

. PCNT

.LCNT
. .MAXLCNT
.UCNT
. .ACNT
.DCNT
.SCNT
.FORM
.FN
LFT
.RL
.BL
.KL
.KP
.DSN
.DDN

.DBN

.PSB

. SEGNM

. LEV
.SSAn

. SSAN

. SEGLENG
.KFBAREA
.KFBALENG
.PCB
.RTN
.KFN
.KEY
.RBA
.RRN

. LENG
.RC

.RC1
.RC2

. SQLCODE
. . WHERE
.ROWLENG
. TBN

. QNM
.ITEM

READ random read counter
MAP info retrieval receive counter

PUT record counter
page counter (print files)

line counter per page (print files)

maximum number of lines per page (print files)

updated records counter UPF file

added records counter UPF file

deleted records counter UPF file

MAP info retrieval send counter

printer FORM name

info retrieval file name

info retrieval VSAM file type KS,ES,RR

info retrieval defined maximum record length
info retrieval defined maximum block length
info retrieval defined key length

info retrieval defined key position

info retrieval data set name

info retrieval DD name
DD name for dynamic allocation

FCA DL/I data base name
DB name for dynamic allocation

FCA DL/I PSB name
PSB name for dynamic allocation

FCA DL/I segment name

FCA DL/l segment level

FCA DL/I SSA fields (n=1 - 8)

FCA DL/l number of SSA fields in use
FCA DL/l segment length (without DBCTL)
FCA DL/l key feedback area

FCA DL/l key feedback area length

PCB number for dynamic allocation

root segment name for dynamic allocation
key field name for dynamic allocation
FCA key field

FCA relative byte address

FCA relative record number

FCA record length

FCA return code (VSAM, DL/I, queues, ...)
FCA return code position 1

FCA return code position 2

FCA SQL return code

for internal use only (DB2 support)

FCA SQL row length

FCA SQL table name

FCA queue name

FCA queue item

PL8

PL8
PL4

PL2
PL2
PL8
PL8
PL8
PL8
CL8
CL8
CL2
BL2
BL2
BL2
BL2
CL44
CL8

CL8

CL8

CL8
ZL2
CL256
BL1
BL4
CL256
BL4
BL4
CL8
CL8
CL236
BL4
BL4
BL4
CL2
CL1
CL1
BL4

BL4
CL18
CL8
BL2

[ss

U U 0 0 0 W

U 0 0 0 W W W W ™

[os

[ss

U 0 W0 W W W@

U 0 00 0 W W W @

[os

O O OO

O

O O0OO0OO0Oo OO0OO0OO0OO0OO0OO0Oo

OO O0OO0OO0O0OO0OO0OO0OO0OOo

QPAC-Batch Reference Manual 6-15

symbol name, description, format length

. .MEMDIRVV FCA version from statistic record PDS
. .MEMDIRMM FCA maodification from statistic record PDS
. .MEMDIRCRDT FCA creation date from statistic record PDS
. .MEMDIRCHDT FCA changed date from statistic record PDS
. .MEMDIRTIME FCA last changed time from stat. record PDS
. .MEMDIRSIZE FCA number of records in member PDS
. .MEMDIRINIT FCA number of initial records PDS
. .MEMDIRUSER FCA User Id PDS
. .MEMNM FCA member name PDS
.STOWID FCA STOW identification PDS
.STOWVV FCA STOW statistic version PDS
. STOWMM FCA STOW statistic modification PDS
.STOWUSER FCA STOW statistic user id PDS
.DSN data set name for dyn. allocation ALLOC
.DDN DD name for ALLOC
.SDISP status disp for ALLOC: DISP=SHR
..NDISP normal disp for ALLOC: DISP=(,CATLG...
.CDISP cancel disp for ALLOC: DISP=(......., DELETE
.TYPSP type of space for ALLOC: SPACE=(CYL,...
.PRISP primary space for ALLOC: SPACE=(...,(nn,...
.SECSP sec. space for ALLOC: SPACE=(...,(....nn
.DIRBL directory blks for ALLOC: SPACE=(....(......., nn
.RLSE release space for ALLOC: Yes oder No
-UNIT unit name for ALLOC: SYSDA
.DIR option DIR for PDS for ALLOC 'D'
.BWD option BWD for VSAM for ALLOC 'B'
.DSORG data set organization for ALLOC:
.RECFM record format for ALLOC:
..VOLID volume serial ident for ALLOC:
.LABEL tape label NL or SL for ALLOC:
.DCLAS data class name for ALLOC: SMS only
. .MCLAS management class for ALLOC: SMS only
.SCLAS storage class for ALLOC: SMS only
. .MN member name for generic selection ALLOC
. SCATNM selected catalog name
. SDSNM selected generic dataset name
W.AT WEB AT position symbol
W.BOOKMARK WEB bookmark symbol
W.CADDRLENGTH WEB client address length
W.CLIENTADDR WEB client address
W.CLIENTCODEPAGE WEB client code page value
W.CLIENTNAME WEB client name

6-16 QPAC-Batch Reference Manual

BL1
BL1
PL5
PL5
PL4
BL2
BL2
CL7
CL8
CL1
BL1
BL1
CL7

CL44
CL8
CL1
CL1
CL1
CL1
BL2
BL2
BL2
CL1
CL8
CL1
CL1
CL2
CL3
CL6
CL2
CL8
CL8
CL8
CL8

CL44
CL44

CL16
CLle6
BL4
CLn
CL40
CLn

0 0 0 WU 0 0 0 U 0 W W W @

0 0 0 U W 0 0 U U U 0 U 0 0 0 0 U 0 0 W @

m @

O O0OO0OO0OO0Oo

symbol name, description, format length

5 =2 25 =2 =2 2 52 =2 5 55 5 5 35 5 52 5 5 5 5 3 3 75 7 =5

(O G Gl Ol Ol Ol Ol O O O GOl Ol O Ol G O O O GOl Ol O

.CNAMELENGTH
.DATAONLY
.DELIMITER
.DOCSIZE
.DOCTOKEN
.FNAMELENGTH
.FORMFIELD

. FROMDOC
.HNAMELENGTH
.HOSTECODEPAGE
.HTTPHEADER
.LENGTH

. PORTNUMBER

. PORTNUMNU
.RESP2

. SADDRLENGTH
.SERVERADDR

. SERVERNAME
.SNAMELENGTH
. SYMBOL
.TCPIPSERVICE
. TEMPLATE

.TO
.UNESCAPED

.BUFFLENG
.CHARATTAREA
.CHARATTLENG
.CLOSEOPT
.CMDTEXT
.COMPCODE
.CORRELID
.DATALENG
.HCONN

.HOBJ

. INTATTARRAY
. INTATTCNT

. INTATTn
.MGRNAME
.MSGID
.OPENOPT
.ONAME
.REASON
.REASONTEXT
.SELCNT
.SELECTORS

WEB client name length
WEB data only flag

WEB

WEB document size

WEB document token

WEB form field value length
WEB form field area

WEB From document value
WEB HTTP header value length
WEB host code page value
WEB HTTP header area
WEB current value length
WEB port number

WEB port number binary
WEB CICS reason code
WEB server address length
WEB server address

WEB server name

WEB server name length
WEB symbol in symbol table
WEB TCP/IP service info
WEB template name

WEB TO position symbol
WEB

MQSeries maximum buffer length
MQSeries character attribute area
MQSeries character attribute length
MQSeries close options
MQSeries command text
MQSeries completion code
MQSeries correlation id
MQSeries current message length
MQSeries connection handler
MQSeries object handler
MQSeries int attribute array
MQSeries int attribute counter
MQSeries int attribute 1-16
MQSeries manager name
MQSeries message id

MQSeries open options
MQSeries queue name

MQSeries reason code

MQSeries reason text

MQSeries selector counter
MQSeries selector array

BL4
CL1
CL1
BL4
CL16
BL4
CLn
CL16
BL4
CL8
CLn
BL4
CL5
BL4
BL2
BL4
CLn
CLn
BL4
CL32
CL48
CL48
CL16
CL1

BL4
CL256
BL4
BL4
CL10
BL4
CL24
BL4
BL4
BL4
CL64
BL4
BL4
CL48
CL24
BL4
CL48
BL4
CL30
BL4
CL64

W W wWwwWwwww
O O0OO0OO0OO0O0O0

OO0 000000000 O0O0Ob0Ob0ObODO0ObODObOD0ObOOOo

QPAC-Batch Reference Manual 6-17

symbol name, description, format length

Q.SELECTORR MQSeries selector 1-16 BL4

6-18 QPAC-Batch Reference Manual

Reserved Field Symbols in Alphabetical Order

symbol name, description, format length

ACCUn

. .ACNT
APPLID

.BL

.BWD
CALDRDATE
CALDRTXMT
CALDRTXWD
CALDRWARN

CALDRWKDY
CALDRWKNR
CCDATE
CCYEAR
CDATE
..CDISP
CDTIME

C.FCNT
CICSID
CTIME
CURSOR
CUSERID
DATE
DAY
DB2COMMIT
.DBN

.DCLAS
.DCNT
.DDN

. DDN
.DSN
.DSN
.DSORG
.DIR
.DIRBL
DIVREM
DnPOSnnnn
EDATE
EPARM
EPARML

accumulators (n = 0 - 99)
they are fixed in the work area positions
6000 - 6990

added records counter UPF file

VTAM CICS application identification

info retrieval defined maximum block length

option BWD for VSAM for ALLOC 'B'

CALENDAR date format CCYYMMDD

CALENDAR name of month (January — December)
CALENDAR name of day (Monday — Sunday)

CALENDAR warning for day adjustment at end of
month

CALENDAR day of week (1-7)
CALENDAR number of week (01-53)

actual century date CCYYMMDD
actual century year CCYY

actual current date DDMMYY

cancel disp for ALLOC: DISP=(......., DELETE
current date and time DDMMYYHHMMSS

(Attention: only valid for basic instruction format)

EXECSQL fetched counter
CICS system identification
actual current time HHMMSS
cursor position after GET MAP

CICS user identification

system date 'DD.MM.YY"
day of system date DD

DB2 auto commit counter

FCA DL/l data base name

DB name for dynamic allocation
data class name for ALLOC: SMS only
deleted records counter UPF file

info retrieval DD name
DD name for dynamic allocation

DD name for ALLOC

info retrieval data set name

data set name for dyn. allocation ALLOC
data set organization for ALLOC:
option DIR for PDS for ALLOC 'D'
directory blks for ALLOC:

division remainder field

record area position nnnn of DSn, DBn
'DD.MM.CCYY'

max.

SPACE=(...,(...,....nn

system date EURO format
external parameter area
length of external parameter value

QPAC-Batch Reference Manual 6-19

PL8

PL8
CL8
BL2
CL1
ZL6
CL10
CL10
CL1

ZL1
ZL2
PL5
ZzL4
PL4
CL1
2xPL4

PL8
CL4
PL4
BL4
CL8
CL8
ZL2
PL8
CL8

CL8
PL8
CL8

CL8
CL44
CL44
CL2
CL1
BL2
PL8

CL10
CL100
BL2

U W W W wWww U W W W wWw
O O OO

o

T W0 o @

W W W

0 0 0 0 0 W @

w
o

O O O0OO0Oo O O

OO O0OO0OO0OO0oOOo

symbol name, description, format length

EPOSnnnn
FC
FILLER

.FN

. . FORM

LEFT
FUNCMSG

. .GCNT
GPOSnnnn
HOUR
HPOSnnnn
ISODATE

.. ITEM
v
I[n]POSnnnn
JOBACTELNO
JOBACTINFO
JOBCLASS
JOBCLASSLG

JOBNAME
JOBNUM
JOBPROGRNM
JOBSTIME
.KEY
.KFBAREA
.KFBALENG
.KFN
.KL
.KP
.LABEL
. LCNT
.LENG
.LENG
.LEV
MAPNAME
MAXCOL
. .MAXLCNT
MAXROW
. .MCLAS
. .MEMDIRCHDT
. .MEMDIRCRDT
. .MEMDIRINIT
. .MEMDIRMM
. .MEMDIRSIZE
. .MEMDIRTIME

6-20 QPAC-Batch Reference Manual

EXCI communication area position (1 — nnnn)
function code special register
place holder for explicit symbol association
info retrieval file name

printer FORM name

info retrieval VSAM file type KS,ES,RR
function return message

GET sequential read counter

global work area position (nnnn =1 - 4096)
hour of start time HH

internal hiper space position (1 - nnnn)

system date ISO standard 'CCYY-MM-DD'
FCA queue item
interval value special register

record area position nnnn of IPF [n]

z/OS Job accounting element no

z/OS job accounting info

z/0OS job class from JOB statement CLASS=

z/OS long job class from JOB statement CLASS=
or //*MAIN CLASS=

JCL job name

z/OS JCL job number

z/OS programmer name from JOB statement
z/OS job start time hhmmss

FCA key field

FCA DL/l key feedback area

FCA DL/l key feedback area length

key field name for dynamic allocation

info retrieval defined key length

info retrieval defined key position

tape label NL or SL for ALLOC:

line counter per page (print files)

FCA record length (for LIBR BL2)

FCA record length LIBR

FCA DL/l segment level

QPAC-Online active map name

maximum columns on screen

maximum number of lines per page (print files)
maximum rows on screen

management class for ALLOC: SMS only

FCA changed date from statistic record PDS
FCA creation date from statistic record PDS
FCA number of initial records PDS
FCA modification from statistic record PDS
FCA number of records in member PDS
FCA last changed time from stat. record PDS

BL4

CL8
CL8
CL2
CL72
PL8

ZL2

CL10
BL2
BL4

BL4
CL144
CL1
CL1

CL8
ZL5
CL20
PL4
CL236
CL256
BL4
CL8
BL2
BL2
CL2
PL2
BL4
BL2
ZL2
CLle6
BL2
PL2
BL2
CL8
PL5
PL5
BL2
BL1
BL2
PL4

U 0 0 0 W W W W

w
o

o @

0 0 0 W ™0 W W 0 0 0 W W @

W U 0 WU 0 W ™

vy
O O O0OO0Oo

0 0 0 0 W W W

O O O0OO0OO0OOo

)

O O

symbol name, description, format length

. .MEMDIRUSER

. .MEMDIRVV

. .MEMNM

MINUTE

. .MN

MONTH

. .NDISP

NETNAME

OPERID

O[n]POSnnnn
.PCB

. .PCNT

PRGNAME
.PRISP
.PSB

. ONM
.BUFFLENG

.CLOSEOPT
.CMDTEXT
.COMPCODE
.CORRELID
.DATALENG
.HCONN
.HOBJ

. INTATTCNT
.INTATTn
. MGRNAME
.MSGID
.OPENOPT
.ONAME
.REASON
.REASONTEXT
.SELCNT
.SELECTORS
Q.SELECTORnN
RACFUSER
.RBA
RC
.RC
..RC1
.RC2

O O O O O O O OO OO0 000000000 O

.CHARATTAREA
.CHARATTLENG

. INTATTARRAY

FCA User Id PDS
FCA version from statistic record PDS
FCA member name PDS

minute of start time MM

member name for generic selection ALLOC

month of system date MM

normal disp for ALLOC: DISP=(,CATLG...

VTAM terminal netname

CICS terminal operator identification
record area position nnnn of OPF [n]
PCB number for dynamic allocation

PUT record counter
page counter (print files)

QPAC-Online program name
primary space for ALLOC:

FCA DL/I PSB name
PSB name for dynamic allocation

FCA queue name
MQSeries maximum buffer length
MQSeries character attribute area
MQSeries character attribute length
MQSeries close options
MQSeries command text
MQSeries completion code
MQSeries correlation id
MQSeries current message length

SPACE=(...,(nn,...

MQSeries connection handler
MQSeries object handler
MQSeries int attribute array
MQSeries int attribute counter
MQSeries int attribute 1-16
MQSeries manager name
MQSeries message id
MQSeries open options
MQSeries queue name
MQSeries reason code
MQSeries reason text
MQSeries selector counter
MQSeries selector array
MQSeries selector 1-16
z/OS RACF user id
FCA relative byte address
return code special register
FCA return code (VSAM, DL/I, queues, ...)
FCA return code position 1
FCA return code position 2

QPAC-Batch Reference Manual 6-21

CL7
BL1
CL8
ZL2
CL8
ZL2
CL1
CL8
CL3

BL4

PL8
PL4

CL16
BL2
CL8

CL8
BL4
CL256
BL4
BL4
CL10
BL4
CL24
BL4
BL4
BL4
CL64
BL4
BL4
CL48
CL24
BL4
CL48
BL4
CL30
BL4
CL64
BL4
CL8
BL4
BL4
CL2
CL1
CL1

0 0 0 0 W W W

0 0 0 0 U 0 W W

O O O0OO0Oo

o O

OO0OO0O0OO0OO0O0D0D0D0ODLODOODLObOLObObODODODODODOODO

symbol name, description, format length

. .RCNT

.RECFM
.RL
.RLSE
.ROWLENG
.RRN
.RTN
. SCATNM
.SCLAS
.SCNT
.SDISP
. SDSNM
SECOND
.SECSP
. SEGLENG
. SEGNM
.SQLCODE
. SSAN
.SSAn
STEPNAME
. .STOWID
. . STOWMM
. .STOWUSER
. .STOWVV
SYSNAME
SnPOSnnn
. TBN
TERMID
TIME
.. TYPSP
TnPOSnnnn
. .UCNT
..UNIT
USDATE
USERID

U[n]POSnnnn

READ random read counter
MAP info retrieval receive counter

record format for ALLOC:

info retrieval defined maximum record length
release space for ALLOC:
FCA SQL row length

FCA relative record number
root segment name for dynamic allocation
selected catalog name

Yes or No

storage class for ALLOC: SMS only

MAP info retrieval send counter

status disp for ALLOC: DISP=SHR
selected generic dataset name

second of start time SS
sec. space for ALLOC: SPACE=(...,(....nn

FCA DL/l segment length (without MPB/DBCTL)
FCA DL/l segment name

FCA SQL return code

FCA DL/l number of SSA fields in use

FCA DL/I SSA fields (n=1 - 8)

z/OS JCL step name

FCA STOW identification PDS

FCA STOW statistic modification

FCA STOW statistic user id

FCA STOW statistic version

z/OS system name / SYSID

record area position nnn of SPOn

FCA SQL table name

CICS terminal identification

QPAC start time 'HH:MM:SS'
type of space for ALLOC: SPACE=(CYL,...
record area position nnnn of TDn, TSn

PDS
PDS
PDS

updated records counter UPF file
unit name for ALLOC:

system date US format
QPAC-Online user identification
record area position nnnn of UPF [n]

SYSDA
'MM/DD/CCYY"

..VOLID volume serial ident for ALLOC:

. .WHERE for internal use only (DB2 support)
WPOSnnnn internal work area position (1 - nnnn’)
W.AT WEB AT position symbol
W.BOOKMARK WEB bookmark symbol
W.CADDRLENGTH WEB client address length
W.CLIENTADDR WEB client address
W.CLIENTCODEPAGE WEB client code page value
W.CLIENTNAME WEB client name

6-22 QPAC-Batch Reference Manual

PL8

CL3
BL2
CL1
BL4
BL4
CL8
CL44
CL8
PL8
CL1
CL44
ZL2
BL2
BL4
CL8
BL4
BL1
CL256
CL8
CL1
BL1
CL7
BL1
CL8

CL18
CL4
CL8
CL1

PL8
CL8
CL10
CLle6

CL6

CL16
CL1l6
BL4
CLn
CL40
CLn

U W W W ™

oy

U 0 0 0 0 0 0 0 0 W 0 0 0 W @

O O 0O

O O OO

o

O O O0OO0OO0OO0oOOo

symbol name, description, format length

.CNAMELENGTH
.DATAONLY
.DELIMITER
.DOCSIZE
.DOCTOKEN

. FNAMELENGTH
.FORMFIELD

. FROMDOC

. HNAMELENGTH
.HOSTECODEPAGE
.HTTPHEADER
.LENGTH

. PORTNUMBER
. PORTNUMNU
.RESP2

. SADDRLENGTH
.SERVERADDR
. SERVERNAME
. SNAMELENGTH
. SYMBOL
.TCPIPSERVICE
. TEMPLATE
.TO
.UNESCAPED

= =5 =25 =2 =5 =2 3z =¥ 5 5 5 5 23z ¥ 5 5 38 5 =5 3z 3z 53 =

WERB client name length
WEB data only flag

WEB

WEB document size

WEB document token

WEB form field value length
WEB form field area

WEB From document value
WEB HTTP header value length
WEB host code page value
WEB HTTP header area
WEB current value length
WEB port number

WEB port number binary
WEB CICS reason code
WEB server address length
WEB server address

WEB server name

WEB server name length
WEB symbol in symbol table
WEB TCP/IP service info
WEB template name

WEB TO position symbol
WEB

XPOSnnnn external area position (1 — nnnn)
Xn Index registers (n = 1-99)
YEAR year of system date

Additional Information to Reserved Field Symbols

BL4
CL1
CL1
BL4
CL16
BL4
CLn
CL16
BL4
CL8
CLn
BL4
CL5
BL4
BL2
BL4
CLn
CLn
BL4
CL32
CL48
CL48
CL16
CL1

BL4
ZL2

JOBACTELNO Contains the number of elements that are defined in the JOB
statement and made available in the field JOBACTINFO.

JOBACTINFO Contains job accounting information from the JOB statement. The

field is divided into 9 sub fields of 16 bytes each where the
information from the JOB statement is stored left justified.

SYSNAME Contains the z/OS system name that is also known under the term

SYSID.

QPAC-Batch Reference Manual 6-23

Symbol Cross-Reference

The cross-reference list clearly shows how a symbol is handled by the QPAC
compiler, as long as the list is not suppressed by the PARM option (NOXREF). The
cross-reference gives details of the format, length and defined addressing format.

field or symbol type:
I.. =

O..
U..
MQS

EXT

HSP

WRK

BAS

XR
ANYWHERE
FCA
LITERAL
SUBROUTINE

SYMBOL ID RELPO F LNGTH DEFND REFERENCE
where utilized:
stmt-column

where defined:
stmt number
field length:
always in bytes
field format:
C = character
\Y = VARCHAR variable character
Z = zoned decimal
P = packed decimal
B = binary
F = SQL floating-point
relative area position:
the relative position is always relative to 1 and not a
displacement from 0. This information can be absent for
certain definitions.

input area definition field
output area definition field
update area definition field
MQSeries

external area definition

hiper space area definition
working storage area definition
based symbol

index register symbol
dynamic field

field attached to an FCA
literal constant field definition
subroutine name

Fig. 93: Diagram symbol cross reference list

SYMBOL ID RELPO F
ACCUO WRK 6000 P
DATE ANYWHERE C
FELDX HSP 1 C

LNGTH DEFND REFERENCE
8 0001 0001-01
8 0020-10
1 0005 0009-01

Fig. 94: Extract of a symbol cross reference list

6-24 QPAC-Batch Reference Manual

Chapter 7. Processing Commands

Overview and Hints

QPAC-Batch contains a complete "high-level-format" instruction set, which enables
automatic data conversion to take place based on field formats. Logical and
arithmetic field formats must be distinguished between, and are normally not allowed

to mix:
C = character logical format
P = packed arithmetic format
7Z = zoned arithmetic format
B = binary arithmetic format
edit mask receiving field for an arithmetic sending field

Fig. 95: Field formats overview

The field format specified with the field definition (character or zoned)
ﬂg cannot be dynamically changed.

QPAC-Batch Reference Manual 7-1

The High-Level-Format Instruction SET

Basic Format

SET recvg field = sendg field-1 [op sendg field-2
literal op sendg field-3
op literal Ce]

op can be: + for addition
- for subtraction
* for multiplication
/ for division
% for modulo
\ for concatenation

literal can be: nnn for arithmetic expressions

-nnn negative arithmetic expressions

Lt character constant, logical
expression

X! hexadecimal constant, logical
expression

B'........ ' bit constant, 8 bits 0 or 1

SPACE figurative constant

BLANK figurative constant

LOWVAL figurative constant

HIGHVAL figurative constant

A character literal has a maximum length of up to 2048 bytes, a hexadecimal literal
has a maximum length of up to 1024 bytes. If the definition would exceed one
statement line, this and every following line may be terminated by "single quote -
slash - blank" and the following statement continues with a single quote.

CHARCONST = 'ABCDEFGH'/ *. COMMENT
'TJKLMNOP'/ *. COMMENT
"QRSTUVW'/ *. COMMENT
'XYZ'!'

HEXCONST = X'0102030405'/ *. COMMENT
'060708090A"/ *. COMMENT
'0BOCODOEOF" *. COMMENT

Fig. 96: Literals over several lines

As an extended definition format an explicit length can precede an individual literal
string:

e.g. CL80'ABCDEF'
XL40'01020304"

If the following string is shorter than the explicit length definition the character string
is right padded with blanks or a hexadecimal string is right padded with low values. If
continuation lines are defined they may be mixed with or without explicit lengths. In
such a case any single explicit length definition is valid for the current line only:

7-2 QPAC-Batch Reference Manual

e.g.

0L=CL80'ABCDE"'/

'12345'/

'67890"'/
CL70'VWXYZ'

The example above results in a total length of 160 bytes.

Between the number "0" and the letter "V" are 65 blanks, following the letter "Z" are

65 blanks.

Special formats

SET recvg field =CX sendg field (char-> hex)
=XC (hex -> char)
=TR (translate)
=MN (move numeric)
=MZ (move zone)
=MO (move with offset)
=AND (boolean AND)
=0R (boolean OR)
=XOR (boolean exclusive OR)
=ADR (load field address)
=C'."' (padding character)
=X'.." (padding hex value)
=CTS (convert timestamp)
=edit mask (predefined edit masks)
SET recvg field,CLXn = sendg field (variable field lengths)
SET recvg field = sendg field,CLXn
SET recvg field,CLXn = sendg field,CLXn

Logical and arithmetical operation codes are distinguished between and may not
be mixed within a set of operands.

Bracketed expressions are supported with the basic format with an arithmetic
set of operands.

The SET high-level-format instruction begins with the keyword SET and is designated
a yield format instruction. When dealing with such a field, its format attribute will be
taken into consideration, i.e. different formats will be converted automatically into the
correct format.

The individual logical members of a SET instruction are separated from each other
by a blank, i.e. a blank is the delimiter for a logical entity. An individual instruction
can contain one receiving field and many sending fields, or operands.

The receiving field is separated from the sending field by the equals sign.

The order of the operands is defined by the presence or absence of an operation
code. If it is absent, the end of the instruction is assumed. There must be at least
one operand for each instruction.

receiving field = sending field

If, with arithmetic expressions, following the yield definition, there is an operation
sign instead of the first operand, the receiving field is taken as the first operand.

QPAC-Batch Reference Manual 7-3

receiving field = op operand-2

(equals to: receiving field = receiving field op operand-2,
opcanbea+, -, */or %)

A symbol can be defined as a receiving field, following the symbol rules as described
in the preceding chapter.

A symbol or literal can be defined as the sending field or operand. The literal is
either a character string, if it is contained within apostrophes, a hexadecimal value, if
the leading apostrophe is preceded by an X, or an arithmetic value (numeric literal),
if it is a simple number.

VARCHAR variable character fields have their length in a preceding length field. This
length field is disregarded if the field is address modified or defined with an explicit
format length.

If a variable character field is defined as a receiving field the total length of the
sending part is stored in the length field if it is not longer than the maximum length of
the variable character field. If this is the case the maximum length is stored and any
remaining rest of the sending part is ignored. If the sending part is smaller than the
maximum length of the receiving field the rest is padded with blanks or any explicitly
defined padding value.

Variable character fields may be concatenated combined with literals or with index
registers variable defined fields.

7-4 QPAC-Batch Reference Manual

The SET Transfer Instruction

SET recvg field = sendg field

SET recvg field sendg field-1 | sendg field-2

The sSET transfer instruction is a logical instruction.
Logical operation code: | vertical line = concatenate
The operation code must be separated from the operands by at least one blank sign.

The logical operation code category can handle the C field format combined with
character or hex literals.

SET STRING = FIELD A
SET STRING = 'ABCDEFG'
SET STRING = FIELD A | 'ABCDEFGH' | X'0O0'

Fig. 97: Transfer and concatenate with the SET transfer instruction

The receiving field of a logical 'yield instruction' can have a different length to the
sending field or the sum of the concatenated operands.

If the receiving field is too short, the rest of the sending side is ignored.

If the receiving field is longer than the sum of the sending side, the remaining part is
filled with blanks as far as no padding value is specified, otherwise with the defined
character or hex value.

There is one exception to these basic rules:

a) If the receiving field is address modified and no explicit length is defined,
the implicit length is increased, and replaced by the length of the sending
field or the total length of all the sending fields, as long as this is smaller
than the implicit length of the receiving field.

b) If the receiving field is address modified, and an explicit field length is also
defined, the latter is taken as the length of the receiving field:

SET FIELD+1 = '*x' > *

SET FIELD+1,CL5 = '*' ————» ‘*bbbb

Fig. 98: SET transfer instruction with address modified receiving field

c) If the sending field is a figurative constant e.g. SPACE and the only operand
(not concatenated) then the whole receiving field is set to this value:

SET FIELD = LOWVAL

Fig. 99: SET transfer instruction with figurative expression

QPAC-Batch Reference Manual 7-5

The SET Arithmetic Instruction

SET recvg field = sendg field-1 op sendg field-2

Logical and sSET arithmetic operation codes are to be distinguished between, and
they may not occur together within one set of operands.

arithmetic operation codes:

addition

subtraction

multiplication

division (any remainder value is in the field DIVREM)
modulo

o N * I+

The operation code must be separated from the operands by at least one blank.

Arithmetic operation codes can cope with the field formats P, 7, B in any order,
together with numeric literals.

SET ACCUO = X1 * 5 - ACCU9 / 5

Fig. 100: Combination of arithmetic field formats

An arithmetic expression consists of a set of arithmetic operations, and is solved
according to mathematical rules, i.e. multiplication, division and modulo are carried
out before addition and subtraction.

SET ACCUO = X1 * 5 - ACCU9 / 5
SET ACCUO product - quotient

~~
N =
-

Fig. 101: Solution according to mathematical rules

A negative numeric literal can be defined if the number is immediately preceded by a
minus sign, without an intervening blank.

SET ACCUQ = ACCUO * -1

Fig. 102: Negative numeric literals

Bracketed expressions are supported with arithmetic operations.

SET ACCUO = X1 * (5 - ACCUS / 5)

Fig. 103: Bracketed expressions

Note: After every division a potential remainder value is available in the reserved
field symbol DIVREM (division remainder) and its content will be overwritten by any
following division operation.

With the modulo operation (% sign) a certain modulo value can be calculated in an
arithmetic expression and stored in the receiving field.

7-6 QPAC-Batch Reference Manual

SET ACCUO
SET ACCUl =

10
ACCUO % 7

X

Fig. 104: Modulo

After execution, the modulo value of the operation ACCUO mod 7 is in the receiving field
ACCU1, in the example the remainder value of the integer division 10 / 7 = 1, remainder 3.

The SET Transfer Instruction (Special Format)

SET recvg field =CX sendg field
SET recvg field =XC sendg field
SET recvg field =TR sendg field
SET recvg field = sendg field
SET recvg field =MZ sendg field
SET recvg field =MO sendg field
SET recvg field =AND sendg field
SET recvg field =OR sendg field
SET recvg field =XOR sendg field
SET recvg field =C'.' sendg field
SET recvg field =X'..' sendg field
SET recvg field =CTS sendg field

The special instruction =Cx (character to hexadecimal)
converts the sending field into hexadecimal format and places the result into the
receiving field. The receiving field must be twice as big as the sending field.

The special instruction convert hex to char =xc (hexadecimal to character)

converts the sending field, which must contain hexadecimal characters, into non-
hexadecimal format, and places the result in the receiving field. The receiving field is
half the size of the sending field.

SET HEXFIELD,CLS8
SET CHARFIELD, CL4

=CX CHARFIELD,CL4
=XC HEXFIELD,CLS

Fig. 105: Character - Hexadecimal conversion

The special instruction =TR (translate)
is a translation function. The receiving field is translated; the sending field serves as
a 256 bytes translation table whose contents is defined by the user.

SET FIELD =TR X'00010203...... !
SET FIELD =TR TABLE

Fig. 106: Translate

The special instruction =MN and =Mz allow to move only the numeric (=MN) or the
zoned (=Mz) part of the sending field to the receiving field. The corresponding
opposite half-byte will not be modified.

QPAC-Batch Reference Manual 7-7

before: NULLFIELD X'FOFOFOFO'
VALUEFIELD = X'ClAlF1F2'

SET NULLFIELD =MN VALUEFIELD

after: NULLFIELD = X'F1F1F1F2'
VALUEFIELD = unchanged

SET VALUEFIELD =MZ NULLFIELD

after: VALUEFIELD = X'F1F1F1F2'
NULLFIELD unchanged

Fig. 107: Move numeric and move zone

The special instruction =Mo transfers the sending field which is shifted to the left by
half a byte to the receiving field. If the receiving field is longer than the sending field,
it will be left padded with binary zeroes.

before: DATE X'19990112"
FIELD X'0000000OOC"

SET FIELD =MO DATE

after: FIELD X'019990112C"

Fig. 108: Move with offset

The special instruction =AND
applies the boolean "AND" function to the receiving and the sending field.

SET FIELD1 =AND FIELD2
both 1 -> 1
other cases -> 0

o O
+ + 4+ o+
o O - -
[T
O O O

Fig. 109: Boolean AND function

The special instruction =OR
applies the Boolean "OR" function to the receiving and the sending field.

SET FIELD1 =OR FIELD2
both0->0
other cases -> 1

O O
+ + + +
OO - -
I
or K~

Fig. 110: Boolean OR function

7-8 QPAC-Batch Reference Manual

The special instruction =XOR
applies the Boolean "Exclusive OR" function to the receiving and the sending field.

SET FIELDl1 =XOR FIELD2
both equal -> 0
other cases -> 1

o O B
+ + o+ o+
o O - B
I

o B O

Fig. 111: Boolean Exclusive OR function

The special instruction =CTS supports in a very simple manner the conversion of
the TOD clock timestamp format into a zoned format and vice versa.

The timestamp format can be 8 bytes binary (TOD clock) or 20 bytes zoned.

The direction of the conversion is specified by the fields.

If the receiving field has 8 bytes binary format then the sending field MUST have a
20 bytes zoned or character format. The other way round the receiving field must
have 20 bytes zoned or character format if the sending field has an 8 bytes binary

format.
A description of the TOD clock format can be found in the IBM manual "principles of
operation".
0S=BINARYTS,BLS8 Timestamp in binary format (TOD clock)
0S=ZONEDTS, ZL20 Timestamp in display format
May also be defined as CL20.
ZonedTsS format:
YYYYMMDDHHMMSShtmu00
SET BINARYTS =CTS ZONEDTS Conversion from zoned format to the
binary format
SET ZONEDTS =CTS BINARYTS Conversion from the binary format to the
zoned format

Fig. 112: Timestamp Conversion

The SET Edit Instruction

SET RECVG FIELD,M'Edit-Mask' = SENDG FIELD

e.g. RECVG FIELD,M'ZZ9.999,99-"
,M'-72729.999,99"

Fig. 113: self-defined edit masks

An edit mask may be defined in a "self made" format for the receiving field. Leading
Z result in zero-suppression. Z and 9 represent digit positions.

SET recvg field =EDA sendg field
=EDAZ
=EDAS

Masktype A= AAAAAA-

Fig. 114: Mask type A

QPAC-Batch Reference Manual 7-9

The numeric sendg field is edited into the recvg field according to the mask
type A.

This extended edit operation enables editing without punctuation.

A negative numeric field results in a '-' sign stored in the right most position.

zero suppression takes place if either EDAZ or EDAS is specified:
- EDAS results in zero suppression up to, but not including, the last digit
- EDAZ results in zero suppression up to, and including, the last digit

e.g.. SET OP0OS65,CL4 =EDAZ IP0OS10,PL5
Pos.10 = X'019376219D"
fully edited = 19376219-
Pos.65 = 219-

Fig. 115: Sample resolution mask type A

7-10 QPAC-Batch Reference Manual

SET recvg field =EDB sendg field

Masktype B=AA.AA . AA AA

Fig. 116: Mask type B

The numeric sendg fieldis edited into the recvg field according to the mask
type B.

This extended edit operation enables editing in groups of 2 decimal digits, separated
by a full stop.

A negative field value is not marked as such.

Zero suppression is not possible.

e.g. SET OP0S65,CL8 =EDB IPOS10,PL5
Pos.10 X'019376219D"
fully edited 19.37.62.19
Pos.65 = 37.62.19

Fig. 117: Sample resolution mask type B

The editing rules for the following mask type are the same as described under
EDB:

SET recvg field =EDC sendg field

Masktype C=AA:AA:AA:AA:AA

Fig. 118: Mask type C

The editing rules for the following mask types are the same as described under
EDA:

SET recvg field =EDD sendg field
=EDDZ
=EDDS

Masktype D= AAA. AAA AAA AAA

Fig. 119: Mask type D

SET recvg field =EDE sendg field
=EDEZ
=EDES

Masktype E= AAA AAA, AAA AA-

Fig. 120: Mask type E

QPAC-Batch Reference Manual 7-11

SET recvg field

=EDF sendg field
=EDFZ
=EDFS

Masktype F= AAA'AAA'AAA AA-

Fig. 121: Maskentyp F

SET recvg field

=EDG sendg field
=EDGZ
=EDGS

Masktype G=AAA AAA AAA-

Fig. 122: Mask type G

SET recvg field

=EDH sendg field
=EDHZ
=EDHS

Masktype H= AA A, AAA, AAA-

Fig. 123: Mask type H

SET recvg field

=EDI sendg field
=EDIZ
=EDIS

Masktype | = AAA . AAA AAA-

Fig. 124: Mask type |

SET recvg field

=EDK sendg field
=EDKZ
=EDKS

Masktype K= AAAAAAAAAA, AA-

Fig. 125: Mask type K

The SET Transfer Instruction for Variable Field Lenghts

This special format transfer instruction allows the definition of variable field lengths.

SET rcvg field

SET rcvg field,CLXn =

SET rcvg field,CLXn =

sndg field
sndg field,CLXn [|
sndg field,CLXn [|

sndg field,CLXn
sndg field,CLXn

-]

An index register may explicitly be defined, and its value is taken as the field length.

7-12 QPAC-Batch Reference Manual

Index Register Instructions and Indexed Addressing

There are 99 index registers available to the user, which can be used for indexed
addressing. The index registers are:

X1 X2 X3 X4 X5 X8 X7 X8 X9 X10.....v.... X99

Indexed addressing occurs when an index register is attached to the field symbol by
a plus or minus operator.

A maximum of 3 index registers can be defined

The index register contents at execution time will be added to or subtracted from the
base address, according to the operator.

It should be noted that index registers wrongly set on the side of the
= receiving field will be checked, but not on the side of the sending field. It
is thereby possible to address an area outside of the record or work area
limits.
SET TABLE+X1 = INPUTFIELD
SET TABLE+X1-X2 = + 1
IF RECORD+X1 = '000' THEN

IF RECORD+X1-X2 NOT = X'FF' THEN

Fig. 126: SET instruction with indexed addressing

Index registers are initialized with zero.

The content of the index registers can be changed by the following short form index
register instructions (no multiplication or division).

Xn+m add value m to index register Xn

Xn-m subtract value m from index register Xn
Xn=m load index register Xn with value m
Xn+Xm add index register Xm to Xn

Xn=Xm load index register Xn with value of Xm

Fig. 127: Short form index register instructions

An index register can also be handled like any data field, using the SET instruction

SET X1 = X1 * 2

Fig. 128: SET instruction and index registers

When loading values from the input or work areas into the index registers, the values
must be numeric. An index register has a BL4 format (4 binary bytes).

SET X1 = ZONEDFIELD, ZL2
SET X1 BINARYFIELD, BL2

Fig. 129: Loading index registers by use of the SET instruction

QPAC-Batch Reference Manual 7-13

Character String Operations

The PARSE Instruction

INTO
>>- PARSE — fromfield —[—————;]JL tofield ———— 1 ; — ><
— tofield,CLn
— tofield+Xn
— tofield+Xn,CLn —
— tofield+nnn

- tofield+nnn,CLn —

— 'charlit'

—X'"hexlit'

— (symlit)

The PARSE instruction extracts parts of a sending field into following defined
receiving fields. The parts of the sending field can thereby be distributed according
to delimiters defined within the instruction. If a delimiter is not explicitly defined then

blank is assumed.

Attention: The receving fields must be previously defined. The PARSE instruction
does not automatically defined them.

fromfield

INTO

tofield

tofield,CLn
tofield+Xn
tofield+Xn,CLn
tofield+nnn
tofield+nnn,CLn

"charlit'

'"hexlit'

7-14 QPAC-Batch Reference Manual

sending field, whose content is distributed to the receiving
fields.

optional key word, for documentation only.

receiving field

According to its position within the PARSE instruction the
corresponding part (string) of the sending field is stored
into it. Be aware of any delimiter that can be explicitly
defined following the tofield.

the receiving field can be address modified according to
QPAC rules. If the receiving field is a VARCHAR field the
attribute V is replaced by C.

Dot
A dot signalizes that the corresponding part (string) of the
sending field has to be skipped.

character literal as a delimiter

The preceding part of the sending field up to this delimiter
is stored into the receiving field that is preceding the
delimiter definition.

hexadecimal literal as a delimiter

The preceding part of the sending field up to this delimiter
is stored into the receiving field that is preceding the
delimiter definition.

(symlit) a defined field symbol in brackets whose content is taken
as a delimiter
The preceding part of the sending field up to this delimiter
is stored into the receiving field that is preceding the
delimiter definition.

If fewer receiving fields are defined than parts (strings) do exist within the sending
field, then any rest is also stored into the last receiving field.

If more receiving fields are defined than parts (strings) do exist within the sending
field, then any remaining receiving field is cleared according to its attribute.

QPAC-Batch Reference Manual 7-15

Chapter 8. Logic Control Commands

QPAC-Batch recognises condition definitions by IF and DO structures. These are
either relation conditions, whereby two operands are compared with each other, or, a
simple examination of a status condition, for example to examine a specific error
condition.

The IF THEN ELSE Instruction

AND
R q
>>—- IF condition

QPAC instruction >
|:THEN :I
> IFEND -><
|—ELSE — QPAC instruction J
Fig. 130: Diagram basic format condition definition
IF Symbol blank blank = 2nd operand
| >
NOT < THEN ...
<= ELSE
>= IFEND
><
<>
—<
—>
=BO
=BM
=BZ
examples; IF Symbol = Symbol THEN
IF Symbol NOT = Symbol THEN
IF Symbol —= X'FE'! THEN
Fig. 131: Diagram relation condition
IF Symbol blank NUMERIC ———— THEN ——»
L J —— PACKED —————
NOT ZERO
—— SPACE
— BLANK
—— LOWVAL
—— HIGHVAL
—— ALPHABETIC
—— ALPHABETIC-LOWER A
—— ALPHABETIC-UPPER -

examples: IF Symbol NUMERIC THEN
IF Symbol PACKED THEN

Fig. 132: Diagram status condition

QPAC-Batch Reference Manual 8-1

The individual logical members of a condition definition are separated from each
other by a blank. A single condition normally consists of two operands, brought
together by the comparison operator.

Both operands can be defined by a symbol, which must follow the symbol rules as
stated in a previous chapter.

Operand-2 could also be a literal, a character string within apostrophes defining a
character literal, an X preceding the first apostrophe defining a hex literal, with a
simple number being a numeric literal or a B preceding the apostrophe defining a bit
constant.

A negative numeric literal is defined by the minus sign preceding the number:

IF ACCUO = 150 THEN

IF CHAR 'ABCDE' THEN

IF SWITCH =BO B'00000001' THEN
IF SWITCH =BZ X'0Ol' THEN

IF NUMBER -1

Fig. 133: Symbols and literals within condition definitions

The following signs can be used as comparison operators:

= comparison to equal <= comparison to less or equal

> comparison to greater =< comparison to less or equal

< comparison to less than >= comparison to greater or equal
-> comparison to not greater => comparison to greater or equal
-< comparison to not less

o= comparison to not equal =BO test bit ones

<> comparison to not equal =BM test bit mixed

>< comparison to not equal =BZ test bit zero

Comparison operators preceded by the keyword NOT are negated:

NOT = not equal
NOT > not greater than

Logical and arithmetic field formats may not be mixed as operand pairs, as no valid
conversion is possible. Such a combination is rejected as an error by the compiler at
conversion time.

When comparing variable character fields the content of the preceding length field is
considered.

If two logical operands that are to be compared have different lengths, the
comparison is in the length of the smaller field as long as both lengths are not
larger than 256 bytes and these are not variable fields.

Arithmetic field formats can be mixed amongst each other:

IF X1 < ACCUO

Fig. 134: Comparison of different arithmetic formats

A figurative constant can be defined as the comparison operator. In this case,
operand-2 is not defined.

8-2 QPAC-Batch Reference Manual

These figurative constants are supported in this shorthand:

SPACE X'40'

BLANK X'40'

ZERO X'FO'

LOWVAL X'00'

HIGHVAL X'FF'

PACKED Is the content of the field packed?

NUMERIC (zoned format) Is the field content purely arithmetic?
ALPHABETIC Combination of A to Z, a to z, and space?

ALPHABETIC-UPPER Combination of A to Z, and space?
ALPHABETIC-LOWER Combination of a to z, and space?

ENTERED (QPAC-Online map fields only)
ERASED (QPAC-Online map fields only)

These figurative expressions can also be negated by NOT:

IF QUANTITY PACKED
IF QUANTITY NUMERIC

IF QUANTITY NOT PACKED
IF QUANTITY NOT NUMERIC

IF NAME ALPHABETIC
IF NAME NOT ALPHABETIC-UPPER

Fig. 135: Figurative constants within condition definitions

Comparison operands with variable length are possible for character fields.

IF ANYFIELD,CLXn = OTHERFIELD
IF ANYFIELD = OTHERFIELD,CLXn

Fig. 136: Comparison operands with variable length

Condition definitions consisting of two operands to be compared with each other, are
called relation conditions.

Such relation conditions can be logically joined together. In order to do this, QPAC
recognizes the two Boolean operators AND and OR.

Joining simple relation conditions by Boolean operators results in combined
conditions.

Any number of combined conditions, in any variation can be defined using the AND
and OR operators. But the rule for the solution of such expressions must be followed.
This rule states: on the same hierarchical level, the AND combinations will be
solved first, in their procedural order.

QPAC-Batch Reference Manual 8-3

IF cl AND c2 OR c3 AND c4 THEN
solves in the first step to:

IF clz OR c3 AND c4 THEN
solves in the second step to:

IF cl2 OR c34 THEN

Fig. 137: Example of the solution rule of combined conditions

The QPAC condition definition also allows for bracketed expressions, thereby
avoiding some redundant relation definitions. It can influence the outcome under the
rule for solving expressions with Boolean operators, by changing the hierarchy.

The use of brackets is nothing other than an extended format of the combined
condition. QPAC recognizes the following elements of the combined condition

definition:
a) simple-condition (relation condition)
b) AND (Boolean operator)
c) OR (Boolean operator)
d) ((combined structure element)
e)) (combined structure element)

The following table shows the rule concerning the allowed sequence for elements in
a combined condition:

combined allowed as first what can what can allowed as
condition definition on precede this follow this last definition
element left? element? element? on right?
simple AND AND
condition yes OR OR yes
()
AND no) cs:ﬂnc]iri:ce)n no
OR (
AND simple
(yes O(R condition no
simple AND
) no condition OR yes
))

Fig. 138: Rule for combined conditions

Brackets must never be defined if only AND or only OR is used in a combined

condition:
IF cl OR c2 OR c3 OR c4 THEN
IF cl AND c2 AND c3 AND c4 THEN

Brackets are not necessary if the definition of the combined condition corresponds to
the solution rule, in that the AND combinations will be solved first:

8-4 QPAC-Batch Reference Manual

IF cl AND c2 OR cl AND c4 THEN
IF cl OR c2 AND c3 AND c4 THEN

Brackets can be used to avoid redundant 'simple conditions":

IF cl AND c2 OR cl AND c4 THEN
IF cl AND (c2 OR c4d) THEN

When brackets are defined, the left and right sides must correspond one to one:

IF ((¢l OR <¢c2) AND (c3 OR ¢4) AND c¢c5) THEN

Bracketing up to a depth of 10 levels is allowed. As long as the hierarchical structure
depth is not reached, the number of pairs of brackets is not limited.

QPAC-Batch Reference Manual 8-5

Visual Examples of the Process
Condition statement with or without an alternative:

A condition statement begins with the question 1F followed by a comparison
operation, and logically ends the true case with THEN, or the false case with ELSE:

IF I1POS1 = '10' THEN SET O1POS1 I1POS1,CL2
ELSE SET O1POS1 = '?2?' IFEND

The keyword TFEND ends the logic and states the physical end of the THEN and
ELSE branches:

IF I1POS1 = '10' THEN SET Ol1POS1 = I1POS1,CL2 IFEND

IF I1POS1

'20' THEN
ELSE SET 0O1POS1

e IFEND

Multiple comparison operations can be joined by AND and OR:

IF I1POS1 = '10' AND
I1POS12 = X'00' OR I1lPOS1 = '"10"'" AND
I1POS12 > X'20' THEN
IFEND

The same condition can be formulated using brackets:

IF I1POS1 = '10' AND
(I1POS12 = X'00'" OR TI1POS12 > X'20') THEN
IFEND

Multiple conditions can be nested up to 15 levels.

8-6 QPAC-Batch Reference Manual

p— '1'

IF I1POS10
IF I1POS20 = '2' THEN
IF I1POS30 = '3' THEN
| SET OUTPUT RECORD
IFEND
ACCU20
IFEND
ACCU10
IFEND

THEN

+ 1

+ 1

INPUT

Fig. 139: Example 1 without alternatives

'1'

IF I1POS10 THEN

IF I1P0OS20 '2'" THEN

IF I1POS30 '3'" THEN

IF I1P0OS40 = '4' THEN

IF I1POS50 = '5' THEN
SET OUTPUTFIELDI1
SET OUTPUTFIELD2

SET INDICATOR

'lll
'22'
'5'

ELSE

SET INDICATOR

IFEND

ELSE

THEN

IF I1POS60 '6!
SET OUTPUTFIELD3
SET OUTPUTFIELD2
SET OUTPUTFIELD4

'33!
'22!
l44'

LSE

SET INDICATOR

'8'

IFEND

IFEND

ELSE

SET INDICATOR = '1'

IFEND

IFEND

IFEND

Fig. 140: Example 2 with alternatives

QPAC-Batch Reference Manual 8-7

ELSEIF Case Structure

Condition Statement with Several Alternatives

IF condition THEN QPAC-Instr.
— AND condition -
- OR
ELSEIF condition THEN QPAC-Instr.
— AND condition -
- OR
ELSEIF condition THEN QPAC-Instr.
— AND dition —
C A :I_ condition
[ELSE QPAC-Instr.
IFEND

Fig. 141: Diagram ELSEIF case structure

The use of the ELSETF keyword leads to a simple form of a condition statement with
many possible alternatives, where further conditions can be stated in the false case.

IF I1POS1,PL4 = 1 THEN CALL-'ROUTINEL'
ELSEIF TI1POS1,PL4 2 THEN CALL-'ROUTINE2'
ELSEIF TI1POS1,PL4 = 3 THEN CALL-'ROUTINE3'
ELSE WTO-"'DATA ERROR - PROGRAM TERMINATED'
IFEND

Fig. 142: Usage of ELSEIF case structure

The above example would look as follows, using nested standard condition

statements:
IF I1POS1,PL4 = 1 THEN CALL-'ROUTINE1'
ELSE IF I1POS1,PL4 = 2 THEN CALL-'ROUTINE2'
ELSE IF I1POS1,PL4 = 3 THEN CALL-'ROUTINE3'
ELSE
WTO-'DATA ERROR - PROGRAM TERMINATED'
IFEND
IFEND
IFEND

Fig. 143: Traditional nesting of IF statements

8-8 QPAC-Batch Reference Manual

DO Loop Instructions

The DO instruction enables the specification of loops with either a stated, or
conditional number of repeats.

DO-nn absolute number of repeats
DO-Xn absolute number of repeats in index register
DO-WHILE positive condition number of repeats
DO-UNTIL negative condition number of repeats
DO-FOREVER endless loop
DOBREAK jump to the beginning of the DO loop
DOQUIT immediately leave the DO loop
DOEND end of loop

Fig. 144: DO-Loop instructions overview

The DO-nn Loop Instruction

Basic format of loop instruction with fixed number of repeats.

DO-nn

DOEND

Fig. 145: Diagram of loop instruction with fixed number of repeats

nn is an absolute value which defines the number of repeats.
DOEND defines the end of the loop.

Nesting up to 10 levels is allowed.

X1=0

DO-10
SET WPOS7000+X1,PL8 = 1
X1+8

DOEND

Fig. 146: Usage of loop instruction with fixed number of repeats

Thereby, 10 table fields of 8 bytes each are initialized. (See also indexed
addressing).

QPAC-Batch Reference Manual 8-9

The DO-Xn Instruction

Basic format of loop instruction with fixed modifiable number of repeats.

DO-Xn

DOEND

Fig. 147: Diagram of loop instruction with fixed modifiable number of repeats

Xn is an index register whose content defines the number of repeats. This index
register is reduced by 1 before each loop. It can thereby be used for relative
addressing within the DO loop. It can also be changed within the DO block, which will
change the number of repeats.

DOEND defines the end of the loop.

X10=80

DO-X10 (the first time X10 contains 79)
SET OPOS80-X10 = IPOS1+X10,CL1

DOEND

Fig. 148: Usage of loop instruction with fixed modifiable number of repeats

The 80 character input record is transferred from dataset 1 to dataset 2 in reverse
order.

The DO-WHILE Instruction

Basic format of loop instruction with positive condition repetition "while".

DO-WHILE condition AND/OR condition

DOEND

Fig. 149: Diagram of loop instruction with positive condition repetition

Condition is a processing dependency. As long as the condition is met, the loop is
processed. The format and usage of the condition correspond exactly to that of the
IF statement, with the exception that there is no THEN following the last condition.

The loop is ended by DOEND.

DO-WHILE I1POS1 = '1l0' AND I1POS12 = X'00'
Ol1POS1 = I1POS1,CL4 PUT-0O1
GET-I1 AT-EOF DOQUIT ATEND

DOEND

Fig. 150: Usage of loop instruction with positive condition repetition

As long as positions 1-2 in the record are equal to '10', and position 12 equals X'00’,
the article number is transferred, and the next record read. A loop exit occurs if the
condition is not fulfilled, or end of file is reached.

8-10 QPAC-Batch Reference Manual

The DO-UNTIL Instruction

Basic format of loop instruction with negative condition repetition "until".

DO-UNTIL condition AND/OR condition

DOEND

Fig. 151: Diagram of loop instruction with negative condition repetition

Condition is a processing dependency. As long as the condition is not met, the DO
loop is processed. The format and usage of the condition correspond exactly to that
of the IF statement, with the exception that THEN does not follow the condition.

The loop is ended with DOEND.

GET-I1

DO-UNTIL I1POS1 = X'FF' OR I1POS1 = '100'
GET-I1

DOEND

Fig. 152: Usage of loop instruction with negative condition repetition

A record will be read within the loop until a record with the identification 100 in
columns 1-3 is found, or until end of file.

The DO-FOREVER Instruction

Basic format of loop instruction with the endless cycle.

DO-FOREVER

DOEND

Fig. 153: Diagram of loop instruction with endless cycle

The DO command contains no condition or value that can be altered within the cycle.
The loop never ends. The loop can be left by means of a DOQUIT or a GO command.

DO-FOREVER
GET-I1 AT-EOF DOQUIT ATEND

DOEND

Fig. 154: Usage of loop instruction with endless cycle

QPAC-Batch Reference Manual 8-11

Extended Logic Commands for Loop Instructions

The DOBREAK Instruction

<
<

DO-..

DOBREAK —

DOEND

Fig. 155: Diagram of DOBREAK instruction

Stops processing in sequence and jumps to the beginning of the DO loop.

X1=80
DO-X1

IF WPOS7000+X1 = ' ' THEN DOBREAK IFEND

DOEND

Fig. 156: DOBREAK branches to the beginning of the loop

In the above example, the first non-blank character from the right is looked for.

The DOQUIT Instruction

DO-..

DOQUIT —
DOEND

Fig. 157: Diagram of DOQUIT instruction

The DO block is exited from immediately, and processing continues following the

DOEND.
DO-WHILE

IF ... THEN DOBREAK IFEND

DO-5
DO-WHILE

IF ... THEN DOQUIT IFEND

DOEND

DOEND

DOEND

Fig. 1568: DOQUIT immediately leaves the loop

8-12 QPAC-Batch Reference Manual

Chapter 9. Subroutines and External Programs

Internal Subroutine CSUB

An independently defined subroutine can be called using cSUB (call subroutine). The
subroutine name can be 1 to 30 alphanumeric characters in length. Any number of
CSUB commands can call the same subroutine, and the CSUB command can be
given anywhere within the QPAC program, as long as it is logically correct.

CSUB-name CALL subroutine

SUB-name subroutine header definition

SUBEND

subroutine end definition

CSUB—-name

SUB—name

subroutine contents

SUBEND

Fig. 1569: Basic format of subroutine usage

SUB-name defines the beginning of the subroutine, where name is the identification
by which the subroutine is called by cSUB. All processing and logic instructions can
be used within the subroutine, including calls to other subroutines, i.e. nesting is
allowed.

SUBEND defines the end of the subroutine. SUB and its corresponding SUBEND must
be on hierarchical level 0, i.e. they may not be within an IF or DO structure block
etc..

A subroutine is only processed if called by cSUB. If defined within the procedural

sequence, the subroutine will be jumped over if sequentially met and not called by
CSUB.

QPAC-Batch Reference Manual 9-1

CSUB-ROUTINE1 ——1

v

SUB-ROUTINE1

» SUB-ROUTINE?2
CSUB-ROUTINEZ2 -

CSUB-ROUTINE3 -

SUBEND

B » SUB-ROUTINE3
CSUB-ROUTINE3 - ‘
SUBEND

SUBEND

Fig. 160: Graphical example of subroutine nesting

Additional Control Commands for Subroutines

The SUBREAK Instruction

SUB-..

<

SUBREAK-——|

SUBEND

Causes an immediate end to processing within the subroutine flow, and a direct jump
back to the start of the subroutine.

The SUBQUIT Instruction

SUB-..

SUBQUIT —

&

SUBEND

Causes processing to immediately leave the subroutine i.e. a direct jump to SUBEND.

9-2 QPAC-Batch Reference Manual

SUB-EXAMPLE

<

SUBREAK

SUBQUIT

SUBEND

Fig. 161: Subroutine instructions SUBREAK and SUBQUIT

IPF=...
OPF=PR
TITLE
OPOS10 = 'TITLE LINE 1'
OPOS90 = DATE OP0OS100 = TIME WASP2
OPOS10 = 'TITLE LINE 2'
TITLEND
v
IF IPOS1 = '115' THEN CSUB-R115
ELSEIF IPOS1 = '116' THEN CSUB-R116
ELSEIF IPOS1 = '200' THEN CSUB-R200 <«
IFEND
SUB-R115
SUBEND
SUB-R116 <
SUBEND
SUB-R200 <
SUBREAK
SUBQUIT
SUBEND <«
v
END

Fig. 162: Subroutine processing

QPAC-Batch Reference Manual 9-3

External Subroutines (CALL Exit Routines)

CALL-'loadmodule' [,parameter,parameter]

Specific external processing routines can be called, using the CALL function, from
anywhere in the QPAC coding. CALLed routines are completely independent from
QPAC, they are loaded for processing as a load module from a link library (z/OS).

The design of external routines must comply with official linkage conventions, such
as starting with the SAVE macro and ending with a RETURN.

By using a parameter address, the QPAC internal working storage is at the disposal
of the routine.

On entry into the routine: Register 15 routine's basic value
Register 14 return address
Register 1 parameter list address
Register 13 save area address

Registers 2-12 must be saved, if they are used in the routine (SAVE/RETURN).

QPAC internally transfers COBOL or PL/I routines to Language Environment (LE)
where they are executed. Therefore, the LE-function PIPI is used. PIPI knows two
possibilities how to treat these routines. They are defined with the type of
initialization: The SUBroutine mode or the MAINprogram mode.

The differences of these two modes are:

1. MAINprogram
The WORKING STORAGE SECTION of COBOL programs is initialized with
each program launch.
The COBOL program must be compiled with the option RENT.
The PL/I program is compiled with the procedure option MAIN.

2. SUBroutine
The WORKING STORAGE SECTION of COBOL programs keeps its
content from a previous call when it is called again.
The PL/I program must be compiled with the procedure option
FETCHABLE.

These two modes may not appear concurrently within the same QPAC program.
Therefore, the mode to be used is specified by a QPAC PARM option:
PARM=CALL=SUB Oor PARM=CALL=MAIN. If an explicit PARM option is missing
CALL=SUB is assumed.

9-4 QPAC-Batch Reference Manual

Assembler format of the linkage convention for the exit routine:

CALL- 'routine',wadr

Fig. 163: Format of CALL instruction for Assembler

wadr addresses the QPAC internal working storage.

USING *,15
ENTRY SAVE (14,12)

ST 13,SAVEAREA+4

LR 12,13

LA 13, SAVEAREA

ST 13,8(12) Backward chain

L 1,0(1) Load QPAC int.
Storage Address

EXIT L 13,SAVEAREA+4
RETURN (14,12)
SAVEAREA DS 18F

Fig. 164: Sample Assembler exit routine

Independent exit routines can be supplied with parameters.

CALL- 'loadmodule',wadr [,wadr,... ,PCBn,PCB-name ...] [,RC]

The standard linkage conventions, as previously described, are applied.

If work area addresses are defined, the default value, as described under the basic
CALL function, no longer applies; only the defined addresses are communicated to
the routine.

CALL-"'SUBROUT',WPOS5000, WPOS5010, WPOS6990, WPOS7000
CALL-'ROUTINE',WPOS5000, PCB1,PCB2

Fig. 165: Passing work areas to external programs

In addition, please note that the high order bit in the high order byte of the last
address in the parameter address list is set to ON.

DL/l PCB addresses can also be communicated:

PCBn = the nth PCB in the PSB
PCB-name = PCB of the DB-Name (DBN=)

QPAC-Batch Reference Manual 9-5

Work area positions in the CALL command cannot be indexed.

CALL-'SUBROUT', WPOSSOOO-I><

Fig. 166: Indexed working storage addresses are NOT ALLOWED

RC can be defined as the last parameter, whereby, a return code from an external
routine can be referred to within QPAC.

In case the operands for the CALL statement can not be fully defined in one
statement, it is possible to continue the definition in the following statement by using
a comma followed by a blank as a delimiter. The first non-blank position in the
following statement constitutes the continuation:

CALL-'ROUTINE',WPOS5000,WP0OS7000,
PCB1, PCB2

Fig. 167: Continuation lines of CALL instruction

The return code, either supplied by an external routine (or set within the QPAC
(rC=)), should be examined as follows:

CALL-'ROUTINE', WPOS5000,RC
IF RC <> 0 THEN

Fig. 168: Examining the return code RC

RC is a special register name, and as such is internally defined.

External Subroutines (LINK Exit Routines)

LINK-'loadmodule' [,parameter,parameter]

The LINK command corresponds in its functionality to the CALL command with the
difference that the routine is newly loaded every time and released after the call.

The definitions of the operands are documented under the CALL command and can
be read there.

9-6 QPAC-Batch Reference Manual

External Tables (Load Table) or Subroutines

LOAD-"'loadmodule', ptrfield[,Xn]

LOAD-fieldname, ptrfield[,Xn]

With this load command external tables (load modules in z/OS) can be loaded that
are thereafter being processed in the QPAC program. As operands a pointer field
and an index register must be defined. The pointer field contains afterwards the
storage address where the table begins and the index register contains the table
length (module length).

Tables that are loaded this way are afterwards being processed with a based
structure. For this the structure must correspond to the format of the table elements.

00B=PTRFIELD, PTR
01B=TABLE KEY,CL3
11B=TABLE TEXT,CL77

LOAD-'ANYTABLE', PTRFIELD,X10

IF TABLE_KEY = '100'" THEN found
ELSE SET PTRFIELD = + 80 *., next element

Fig. 169: Example Load Table Based Structure

The end of the table may be recognized by an end element or by cumulating the
individual element lengths and comparing them with the maximum length in the index
register.

Instead of directly specifying the module name the name of a field may be defined
where the module name will be stored at the time of execution just before the LOAD
command is executed.

If the loaded module is an assembler program it may be afterwards called with
CALL-Ptrfield,

0S=MODULENAME, CL8
0B=MODULEADDRESS, PTR

SET MODULENAME = 'ASSPROG'
LOAD-MODULENAME , MODULEADDRESS

NORMAL

CALL-MODULEADDRESS,WPOS1,WPOS500

Fig. 170: Example dynamic loading of a module

QPAC-Batch Reference Manual 9-7

Deletion of Loaded Tables or Sub Routines

DELMOD-'loadmodule'
DELMOD-symbolname

With this command modules which have been previously loaded with the .OAD
command can be selectively deleted from the memory.

QPAC as Subroutine (Called from User Main Program)

Initial Call

From an Assembler or Cobol program a QPAC-Batch program may be called up as a
subroutine as follows:

LOAD ..QPAC.. load QPAC nucleus and
ST R1, QPACENTR save ENTRY address

Initial call of the loaded QPAC nucleus serves for assembling the QPAC-Batch
program. A parameter area is transferred in which QPAC PARM options can be
defined. The option SUBINIT must be present in the PARM area as first operand.
This says that QPAC is called up as a subprogram from a higher-ranking program.
Afterwards further options can be defined which concern QPAC itself,

e.g. NOLIST, NOLOGTIT, WORK=nnn

The source code of the QPAC program is normally read in via /QPACIN DD * under
z/OS. If this is not possible, reading in can be controlled via the PDS data set
/IQPACPGM under z/OS with the PARM option QPGM=progname. Progname is the
member name under which the source code is stored.

Another possibility comprises the assembled form as load module, which is
controlled by the PARM definition QMOD=progname. These possibilities are described
in Chapter 1: Introduction under PARM Option.

A third possibility is having the QPAC program code in the internal work area. If the
length of the first two bytes is greater than 100 it is automatically assumed that the
QPAC program itself follows the SUBINIT statement in 80 bytes elements. The
length then contains the program size which is terminated by an END statement.

This way QPAC can load and call itself (LOAD-"'QPAC'. ..
...CALL-pointer, ...).

If QPAC is called as a sub program from a QPAC main program the listing of the sub
program can be separated from the main program by specifying the DD statement
//IQPACSUBL DD SYSOUT=*.

As a further parameter address pair, the address of an area called External Area and
its length can be transferred if required. These are called up in the QPAC program
by field symbols, see DSECT in Assembler or LINKAGE SECTION in COBOL.

QPAC recognizes whether such an area is planned from the set high-order bit, or
through a DUMMY definition (zero value). An existing area is not moved into the
QPAC program. The length can be up to 3 MB.

In a subroutine QPAC this area can be called up directly by implicit symbol

9-8 QPAC-Batch Reference Manual

definitions XPOSnnn, or by allocating own symbol names according to the rule
nnX=SYMBOL.

SET XP0OS10,CL5 = 'ABCDE'
or

10X=SYMBOL, CL5

SET SYMBOL = 'ABCDE'

Fig. 171: Addressing the external area

L R15, QPACENTR 1)
CALL (15), (PARMS),VL 2)
or CALL (15), (PARMS, DUMMY) 3)
or CALL (15), (PARMS,AREALEN, AREADATA) , VL 4)
LTR R15,R15 5)
BNZ INITERR 6)
PARMS DC F'100',CL100'SUBINIT, NOLIST, QPGM=xXXXX, ..."
AREALEN DC F'32000"
AREADATA DC 32000CL1"
DUMMY DC F'0"' 7)
or
PARMS DC F'800',CL80'SUBINIT, XREF"'
DC CL80'PARM=LIST !
DC CL80'IPF1=VSAM,DYNAMIC '
DC CL8Q' '
DC CL80'ALLOC-I1 '
DC CL80'"... !
DC CL80'END !
1) load entry address
2) initialization call without area
3) without VL, without area
4) with area
5) RC=07?
6) error found?
7) length value is O

Fig. 172: QPAC as a subroutine: Initial call

QPAC-Batch Reference Manual 9-9

Subsequent Calls

Subsequent calls always mean an execution of the QPAC-Batch program. This is
best conceived as a subroutine. The QPAC program can be equipped with additional
work areas as required. These are transferred on call into the internal QPAC work
area, where they are available for the QPAC program.

When the CALL command is given, 3 pieces of information are supplied:
1. Position of internal work area to which the area is being transferred

2. Length of area

3. Address of area.

Before return, such areas are transferred back again and are then available again for
the calling program.

When the CALL statement is made, a PARM field is defined containing the key word
SUBEXEC. This signals the QPAC program that a call to program execution is
involved. Whether additional data areas are transferred is indicated by the high-order
bit or DUMMY field (zero value). The same applies to the number of defined areas,
or the end of the operands.

L R15, QPACENTR

CALL (15), (PARMS),VL 1)
or CALL (15), (PARMS, DUMMY) 2)
or CALL (15), (PARMS,WPOS,WLEN, WAREA, ...),VL
or CALL (15), (PARMS,WPOS,WLEN, WARER, . .., DUMMY) 3)

LTR R15,R15
BNZ CALLERR

PARMS DC F'7',C'SUBEXEC'

WPOS DC F'10001"
WLEN DC F'4096"
WAREA DC CL4096" '
WPOS2 DC F'o0001"
WLEN2 DC F'2000"
WAREAZ2 DC CL2000" "'
DUMMY DC F'0'

1) execute program without areas
2) without VL, without areas
3) without VL, with areas

Fig. 173: QPAC as a subroutine: Subsequent calls

9-10 QPAC-Batch Reference Manual

Final Call

Final call must occur to delete from the memory all areas dynamically installed by
QPAC-Batch as well as the assembled program. When the CALL statement is made,
a PARM field is defined containing the key word SUBTERM (PARM option)SUBTERM.
This signals the QPAC program that deletion of all dynamically installed areas and
loaded load modules is involved. Afterwards the QPAC program no longer exists in

the memory.
L R15, QPACENTR
CALL (15), (PARMEND),VL 1)
or CALL (15), (PARMEND, DUMMY) 2)
LTR R15,R15
BNZ ENDERR
PARMEND DC F'7',C'SUBTERM'
DUMMY DC F'0"
QPACENTR DC A(0) 3)
1) with VL
2) without VL
3) entry address

Fig. 174: QPAC as a subroutine: Final call

QPAC-Batch Reference Manual 9-11

Chapter 10. System Libraries and System Components

VTOC

Basic Format of VTOC File Definition

>>- IPF[n]= VTOC ><
|— *DDname, J |— ,options J
DDname explicitly defined DDname. If this definition is missing, IPF is
taken as DDname.
options additional options
as described in Chapter 2: Input/Output Definitions
F4 If 74 is specified as an option the first VTOC record that is output

will be the DSCB F4 (format 4) record.

To read the VTOC, a DD statement indicating the required volume, is required. A
dataset name (DSN=) is not necessary.

//IPF1 DD UNIT=SYSDA,VOL=SER=XXXXXX
//IPF2 DD DSN=QPAC.LIBRARY,DISP=SHR

Fig. 175: DD statement for z/OS VTOC records

QPAC-Batch Reference Manual 10-1

General Hints on VTOC Usage

The VTOC of the addressed disk is read logically. Format 1 records and the
corresponding extent data and also format 8, format 9 and format 3 records are
made available to the user.

After the QPAC open of the VTOC file, the volume serial number is in the FCA, with
a displacement of 2.

Positions 1 to 135 of the format 1 records remain unchanged. Starting with position
136, QPAC appends to the format 1 record all the extent information for the
corresponding format 3 record.

Thereby all the necessary information is available through a single read command.

10 bytes per extent are used. Extent data is delimited by X'0000'.

For EAV volumes also format 8 and format 9 records plus if appropriate the
corresponding format 3 records are presented. Complete records (140 bytes) are
presented. The record layout is described in the IBM manual "DFSMSdfp Advanced
Services®. Position 45 contains the format oft he record.

1 2 3 4 5 6 7 8 9

1 1 - 044 file name
2 45 - 105 according to format 1 or format 8 layout
3 106 - 1. extent type indicator
4 107 - 1. extent sequence number
5 108 - 111 1. lower limit cchh (CKD) or nnnn (FBA)
6 112 - 115 1. upper limit cchh (CKD) or nnnn (FBA)
7 118 - 125 2. extent
8 128 - 135 3. extent

| etc.
9 X'000000' delimiter

Fig. 176: VTOC layout returned by QPAC

//IPF1 DD UNIT=SYSDA,VOL=SER=...
//IPF2 DD

//OPF1 DD DSN=...

//EXEC QPAC

IPF1=VTOC,WP=5000

IPF2=VTOC,WP=5000
OPF1=SQ,200,3600,WP=5000

FILEl: GET-I1 AT-EOF GOTO FILE2 ATEND

PUT-01 GO TO FILEl
FILE2: GET-I2 AT-EOF GOEND ATEND

PUT-01 GO TO FILEZ2

END

Fig. 177: Example reading VTOCs

10-2 QPAC-Batch Reference Manual

z/OS-Libraries (Partitioned Data Sets)

Basic Format of z/OS-Library File Definition

>> IPF[n
_EEOPF[H
UPF [

nl=

J:
J:

[*DDname,] — PDS ><
}7 PDSEJ L,options J

DDname

options

DIR

FCA=....

MN=....

NOE

EOM

explicitly defined DD name.
If this definition is missing, IPF is taken as DDname.

additional options
as described in Chapter 2: Input/Output Definitions

directory only

directory information is given instead of data records. The
directory-definition can also be dynamically defined using the
reserved field symbol. . DIR. Therefore the field. . DIR has to be
filled with a "D" before the OPEN.

e.g. SET I1DIR = 'D'

the FCA option is an important one. The FCA is dynamically
assigned if not explicitly defined.

member name

single members or groups of members can be selectively read.
The definition follows the 'pattern matching' principle, whereby
the following two wildcards can be used:

* represents one or more characters. Only one asterisk per
definition is allowed, and this must be either at the
beginning or the end.

+ marks a position and represents one valid character.
This marker can appear anywhere within the definition.

This member selection can also be dynamically defined using the
reserved field symbol. . MN. Therefore the field. . MN must be
filled with the member name or any generic part before the
OPEN.

After SETGK/SETEK no E status code will be returned in the
FCA.

end of member

The end of each member is displayed. The field . .RC2 returns
an "E" after the last member record without containing a record
in the record area..

QPAC-Batch Reference Manual 10-3

General Hints

MN=name individual member name

MN=++++T all member names with a length of 5 bytes ending in T
MN=*T all member names ending in T

MN=T* all member names, beginning with T

MN=*7Z7+ all member names with a Z in the second to last position

Fig. 178: Member selection for PDS library file

OPF [n]=PDS allows to insert new members into an existing PDS. The member
records are written by the pUT instruction. Finally the member name has to be put
into the FCA field . . MEMNM; the member is inserted into the PDS directory by the
STOW instruction.

The FCA field . . STOWID signals whether an existing member may be replaced ('R")
or only an addition may be done (‘'A').

UPF [n] =PDS allows the content of existing members to be modified and new
members to be added.

With the PUTA instruction new members are inserted. Such members have to be
completed with the STOW instruction (as previously described under OPF [n]=PDS) .
With the instructions sequence GET - PUT existing member records may be
modified but no records may be added or deleted.

The number of member records may be modified by "copying” them with the
instructions sequence GET - PUTA.

Members can be deleted by the PUTD instruction. Before executing the PUTD
instruction the FCA field . . MEMNM must be filled with the member name. After
execution the return code 'G' is returned in the FCA field . . rRC2 if the member does
not exist.

on z/0OS Libraries

The PDS libraries can have either fixed record lengths or be 'undefined'. In both
cases the actual record length will be stored in the FCA with a displacement of 12 (4
bytes binary).

With an 'undefined' PDS it should be remembered that the QPAC internal record
area length, which is the default, is 32760 bytes; this can lead to a WRONG
LENGTH situation, which can be remedied by an RL= definition:

IPF=PDS,RL=32767
OPF=PDS,RL=32767

Fig. 179: Record length definition for PDS

A partitioned dataset can be read as a full library file or as a member file. In either
case the FCA is needed for two-way communication.

The actual number of data bytes read from the PDS record is stored in the field

. .LENG in binary format. If the PDS has an undefined format, and the record length
may exceed 32760 bytes, the operand RL=nnnnn must be defined in the file
definition. This operand overwrites the default length, which is required for
addressing the internal work area.

10-4 QPAC-Batch Reference Manual

FCA= returned by QPAC key

Displ. 0 1 2 10 12 16 20 28

Bytes |11 8 111 4 1 8 1

member name
for SETGK/SETEK

A = sTOw allows add, no replace
R = sTow allows add and replace
D = sTow deletes the member
.STOWID
actual record length (. .LENG)
member name 1 = name is an ALIAS

. .MEMNM
relative no. of concatenated data sets (. . DSNO)

return code

all ok

member not found (after SETGK/SETEK/PUTD)

new member name (1. member record)

end of member (no record found)

if member searched by SETGK/SETEK and NOE not defined or
always when EOM has been defined)

= directory record
.RC2

m= Q%
Inn

O

function code
b = normal action

N = release current member
..RC1

Fig. 180: FCA for PDS library file access

PUT for output files and PUTA for update files now update statistical information in
the directory record. Therefore, the new fields STOWVV, STOWMM or STOWUSER can
be filled before the sSTOW command in addition to the sSTOWID field.

. .STOWVV, BL1 Version for the PDS directory statistics
. .STOWMM, BL1 Modification level for the PDS directory statistics
. .STOWUSER, CL7 Userld for the PDS directory statistics

After the first GET command in a member (M in the . .RC2 field) the FCA contains
additional information from the directory statistics record in a formatted format.
This information can be collected by using the following reserved field symbols:

QPAC-Batch Reference Manual 10-5

.MEMDIRVV, BL1 Version in the member directory statistics record

.MEMDIRMM, BL1 Modification in the member directory statistics record
.MEMDIRCRDT, PL5 Creation date in the member directory statistics record
.MEMDIRCHDT, PL5 Changed date in the member directory statistics record
. .MEMDIRTIME, PL4 Time hhmmss in the member directory statistics record
. .MEMDIRSIZE, BL2 Number of records in the member directory statistics
record
. .MEMDIRINIT, BL2 Initial size in the member directory statistics record
. .MEMDIRUSER, CL7 Userld in the member directory statistics record

The . .RC2 code "G" after a SETGK command signalizes that the member name in
the predefined key field does not exist. During the following GET command the next
higher member is accessed or EOF is given if not additionally EOM has been defined.

If after a code "G" after a SETEK command a GET is used to read on the first member
of the PDS is accessed.

The . .RC2 code "D" after a GET command signalizes that a directory record has
been read.

10-6 QPAC-Batch Reference Manual

SCAT (z/OS System Catalog)

Basic Format of the z/0S System Catalog File Definition

>>- IPF[n]=SCAT ><
I—,SCATNM=J |—,SDSNM=—, |—,options J

SCATNM=

SDSNM=

options

FCA=....

VOLID

DIR

FULL

catalog name

if this operand is missing the whole catalog and all the
alias catalogs will be read. This could take a long time! The
current catalog name is shown in the FCA.

selected data set name
With this operand data sets can be generically selected
according to "pattern matching" rules.:

e.g. , SDSNM=SYS1.*
, SDSNM=SYS1.** ,PROCLIB

Additional options (that make sense)

The FCA may be laid into the internal working storage area. If
this option is missing the FCA is dynamically allocated and can
only be addressed by predefined symbol names.

Only DSN, type and VOLID are returned from the catalog. This
will essentially consume less system resources and time.

All information available in the catalog is returned.

All information available in the catalog, completed with VTOC
and VSAM, are returned.

If VOLID, DIR or FULL is missing, information for VSAM is not
returned, only from the catalog and from the VTOC.

The FCA for the z/OS system catalog has the following format:

Displ. 0 20

Bytes 2 44
..RC . .CCATNM
return code/reason code current catalog name

Fig. 181: FCA for z/0OS System Catalog

Return code and reason code can be found in the message manual volume 3
under message IDC3009I.

During execution the field . . CCATNM current catalog name contains the catalog

QPAC-Batch Reference Manual 10-7

name that is currently being read.
Data set information is made available according to the following record structure.
One record per GET instruction.

01-44 DSN data set name
45- data set type: A = Non-VSAM
B = Generation Data Group
C = VSAM Cluster
D = VSAM Data Component
| = VSAM Index Component
G = VSAM Alternate Index
R = VSAM Path
H = Generation Data Set
U = User Catalog Connector
X = Alias
46-51 VOLID oder 22?7?22 (if non-existent)
52-53 DSORG PO = PDS, PS = SAM, VS = VSAM
54-56 RECFM F = Fixed, FB = Fixed blocked, etc.
57-61 BLKSIZE / CISIZE
62-66 LRECL
67 Allocation Type C = Cylinders, T = Tracks, B = Blocks
68-72 Primary Space
73=77 Secondary Space
78-80 reserved
81-88 Creation date YYYYMMDD
89-96 Last referenced date YYYYMMDD
97-104 Expiration date YYYYMMDD
105-108 GDG limit
109-118 VSAM HARBA value (high allocated RBA)
119-128 VSAM HURBA value (high used RBA)
129-136 DATACLAS
137-144 MGMTCLAS
145-152 STORCLAS
153-160 Last backup date

Fig. 182: SCAT record structure

All fields are in character format. If individual fields have a valid content depends on
the actual file type.

The catalog name addressed and/or the data set names to be selected may also be
dynamically put into the reserved fields . . SCATNM and . . SDSNM before the OPEN.
This requires an explicit file definition.

e.g. IPF1=SCAT

SET I1SCATNM = 'TEST.CATALOG'

SET I1SDSNM = 'KTEST.*'
OPEN-I1
GET-I1

Fig. 183: Example SCAT

10-8 QPAC-Batch Reference Manual

SLOG (z/OS System Logger)

Basic Format of the z/0S System Logger File Definition

>>- IPF =SLOG
) L—,STREAMNM= —J L—

J ><

,options

STREAMNM=

options

GMT=NO | YES

ACTIVE |ALL

start position:

TIMESTAMP=

TIMESTAMPFROM=

TIMESTAMPTO=

YOUNGEST
OLDEST

direction:

OLDTOYOUNG
YOUNGTOOLD

FCA=....

log stream name
the stream name is necessary. It may also be dynamically
stored in the reserved field InSTREAMNM before the OPEN.

e.g. SET I1STREAMNM = 'SYSPLEX.OPERLOG'

additional options

defines the timestamp being local (NO) or Greenwich mean
time (YES). Default is NO.

ACTIVE specifies that only active data are returned from
the log stream. ACTIVE is the default.
ALL specifies that active and inactive data are returned.

yyyymmddhhmmsstt

The timestamp parameter defines the start position from
where we read. The direction of reading is dependant from
additional operands.

This parameter should be replaced by TIMESTAMPFROM=.
If TIMESTAMP= is used, warning message QPAC182W will
be displayed.

yyyymmddhhmmsstt

The TIMESTAMPFROM parameter defines the start position
from where we read. The direction of reading is dependant
from additional operands.

yyyymmddhhmmsstt
The TIMESTAMPTO parameter defines the end position
until where we read.

the youngest data block is read
the oldest data block is read
Default is OLDEST.

reading goes from oldest to youngest data block

reading goes from youngest to oldest data block.

Default is OLDTOYOUNG.

the FCA may be laid into the internal working storage area.
If this option is missing the FCA is dynamically allocated
and can only be addressed by predefined symbol names.

QPAC-Batch Reference Manual 10-9

RC=YES

10-10 QPAC-Batch Reference Manual

return code / reason code
If this parameter is specified any return or reason code is
returned in its FCA field and processing continues.

Please note: In this case X'0846' and X'0848' have to be
explicitly tested for.

The FCA for the z/OS system logger has the following format:

Displ. 0 4 12 30

Bytes 4 4 4 37

. .RETCODE

. .REASON

. .DATALENG

. .REASONTEXT

Fig. 184: FCA for z/0OS System Logger

Return code and reason code can be looked up in the manual Authorized
Assembler Services Reference Volume 2 under IXGBRWSE macro.

The structure of the stream records is dependant from the stream name.

Two reason codes are not handled like errors by QPAC:

The reason code X'0846' means: The log stream is empty and interpreted as EOF, if
RC=YES has not been defined.

The reason code X'0848' means: No more data exists in the log stream and is
interpreted as EOF, if RC=YES has not been defined.

IPF1=SLOG,ACTIVE,RC=YES, YOUNGEST, OLDTOYOUNG
SET I1STREAMNM = 'SYSPLEX.OPERLOG'

GET-I1 X1+1
IF I1IRETCODE = 8 AND I1REASON,CL4 = X'00000848'

THEN SETIME (WAIT=0500) *. WAIT 5 SECS
IF X1 > 10 THEN GOEND ELSE GOBACK IFEND *. CONTINUE
IFEND
PRINTR (*)
END

Fig. 185: Example 1 SLOG

IPF1=SLOG, STREAMNM=SYSPLEX.OPERLOG, GMT=NO,
TIMESTAMPFROM=2005070117000100

GET-I1

PRINTR (*)

END

Fig. 186: Example 2 SLOG

QPAC-Batch Reference Manual 10-11

Chapter 11. Integrated Functions (Function Box)

Functions Overview

SCANF (
SCANR (
SCANW (

SNAP (

SORTF (
SORTR (
SORTW (

IDCAMS (

PRINTF (
PRINTR (

PRINTW (

SEQCHK (

SETIME (

)

BINTABS (

CHANGEF (
CHANGER (
CHANGEW (

IEBCOPY (

)
)
)

)
)
)

CALENDAR (

COMPAREF (
COMPARER (

)

)
)

)

)

)

)

)
)
)

)

)

)
)

Binary Table Search.

Universal date conversion routine. Converts
standard date, Julian date, week, day of week

Changing character strings in files
Changing character strings in records
Changing character strings in internal working area

Compares two files
Compares two record areas

VSAM catalog functions.
z/OS utility functions.

Print-out of a file in character/hex format

Print-out of a record in the record area in
character/hex format

Print-out of the work area, hiper space or external
area in character/hex format

Scans a file for a given character string

Scans a record area for a given character string
Scans a work area for a given string

Sequence check of a file

Allows the setting of time intervals

Takes a snapshot of the contents of QPAC fields like
symbols, index registers, accumulators etc.

Sorts input files onto one output file
Sorts received records and returns them
Sorts internal work area segments (tables)

Fig. 187: Integrated functions overview

QPAC-Batch Reference Manual 11-1

Applicational Description

The following specifications apply to all functions:

a) A function is defined by a left parenthesis appended immediately after the
key word, which is the function name.

COMPAREF (parameters)

Fig. 188: Basic format of function routines

b) Parameters within parentheses must be defined without blanks.

c) A function definition together with its parameters must be complete in one
statement.

Continuations over more than one statement are not supported.

d) Parameters can be defined or communicated to the function routine in two
different ways:

o the definition is directly within the parentheses:

COMPAREF (1,5,2)

Fig. 189: Parameter specifications for function routines

¢ the definition can be stored in the internal QPAC work area, and a
reference to this area is made within the parentheses. Therefore, the
keyword PARM= is used:

COMPAREF (PARM=WPOS5000)
J
1,5,A;

T

semicolon as delimiter

Fig. 190: Parameter specifications in the internal working storage

The second method allows for dynamic build-up and communication of
parameters.

e) The parameter definitions are first validated by the function itself, but not until
the function is called, and not at QPAC translation time. The end of a set of
parameters is marked by a semicolon (;).

f) Generally, there is no predetermined sequence for parameters. However,
parameters that depend on each other must be coded in the sequence of
their interpretation, left to right. For example, file identification coding must
precede record position coding:

COMPAREF (IPF2,IPF3,20-80)

Fig. 191: Parameter sequence

11-2 QPAC-Batch Reference Manual

)

The relevant information for each function, is described in the detail
descriptions for the individual functions.

For functions handling entire files, e.g. COMPAREF () (compare file), the
following rules apply:

e if the input file is opened before calling the function, processing starts
with the last record read.

o if the input file is not opened, the function will open it.

e an output file (printer), if not yet opened, will be opened by the function.
On function end, the output file remains opened, except if otherwise
stated in the detail description of the function.

e input files are closed after function end.

Any required printing is normally carried out on the internal system printer

using PUTLST operations. If the function parameters contain the definition of
an output file, printing occurs on the defined output file.

OPF=PR COMPAREF (OPF)

Fig. 192: Redirecting print output

If the functions find parameter errors at interpretation time, a message is
given out and processing ends abnormally. The keyword NOABEND prevents
the abnormal ending of processing. In such a situation, the function return
code will be set to 12, which can later be tested.

PRINTF (IPF1, IPF2,NOABEND)
IF FC = 12 THEN ...(any parameter error)

Fig. 193: Testing the function return code

If functions are used together with internal subroutines, it may be necessary
to exchange control information to, and from the functions. In order to do this,
a special register FC (function code) exists.

FC is a 4 bytes binary register, and can be accessed as such.

If a file identifier is to be given as a parameter (e.g. IPF1 or ODB2), it is of
course possible to use the short form of this identifier (e.g. I1 or 02).

The internal processing and result of some function routines are the
consequence of a comparison. Examples of this are the compare functions,
whereby any inequality is printed.

With all these comparison dependent functions, it is possible to process the
available records or areas instead of an in-line subroutine printing the result.

This subroutine steering is defined by the keyword parameter EQ=, NE= etc.,
where the subroutine name is included. The individual keyword parameters
differ according to the function.

Function routines must not be called recursively. Within an entered
subroutine the same function routine must not be recalled.

QPAC-Batch Reference Manual 11-3

BINTABS(): Binary Table Search

This function allows large tables in the internal work area or hiper space to be
searched. The function expects the tables to be sorted in ascending sequence with

fixed element lengths.

The function works according to the principle of finding the “middle”.

>>- BINTABS (parameters) ><

The information required by the function is given to it through parameters:

parameters:
[WK=]WPOSnnnn:Xn

HPOSnnnn
Symbol:Xn

RL=nnn
Xn

KP=nn-mm
nn, 1

ARG=WPOSnnnn:Xm
Symbol:Xm

EQ=Subroutine

NE=Subroutine

Work area from-to definition as a dynamic specification of
dimensions. The contents of the index register (to) is the
displacement and is added by the function to the from
value to determine the end of the table.

Length of an element in the table, as a direct value or as
an index register.

Key position within the table element.

This sort position may be defined as from-to or as
from,length. It is assumed that the table is sorted in
ascending sequence according to those positions.

Argument to be searched in the table.

The length of the argument field must correspond to the
length of the key field (KP=). This is assumed. The offset of
the element found is returned in the index register.

Subroutine to be called if the element is found in the table.
In this case the index register Xn contains the offset of the
element found relative to the beginning of the table.

Subroutine to be called if the element is not found in the
table.

The definition of subroutines is optional. In every case after returning from the
function the function register FC contains 0 (null), if the element has been found and

1 if it has not been found.

11-4 QPAC-Batch Reference Manual

BINTABS (WK=WP0OS10001:X1,KP=1-5,ARG=FIELD:X2,EQ=SUBEQ, RL=80

The table in the internal work area starting from position
10001 is searched for the value in the argument field
FIELD.

If the element is found the index register X2 contains the
offset relativ to the beginning of the table and the
subroutine SUBEQ is called. After returning from the
subroutine processing is continued behind the function
BINTABS.

BINTABS (TABSTART:X4,KP=5, 9, ARG=ARGFELD:X9, EQ=SUBEQ, RL=100)

The table begins at the field TABSTART and is within the
hiper space. It is sorted according to positions 5-13.

BINTABS (HPOS1:X5,KP=1-9,RL=50, ARG=ARGUMENT :X6)
IF FC = 0 THEN found IFEND

This example shows a query, whether the element does
exist within the table or not, without any subroutine being
defined.

Fig. 194: BINTABS() examples

QPAC-Batch Reference Manual 11-5

CALENDAR(): Date Conversion

This function allows the date to be easily converted into different formats.

Six main formats are supported:

e standard date DDMMYY

o standard date with century DDMMCCYY
e julian date YYDDD

e julian date with century CCYYDDD

e week format date YYWWD

o week format date with century CCYYwWwD

The standard date is the most commonly used format and is available in three
different sequences of the elements year, month, day:

e YMD for year month day
e CYMD for century year month day
e MDY for month day year
e MDCY for month day century year
e DMY for day month year
e DMCY for day month century year

The Julian date expresses the days as a number calculated consecutively since
January 1 in the format [CC]YYDDD (DDD=day within year).

The week format expresses the week as a number, starting each January 1 anew,
and a day number within a week, Monday being the first day.
[CCIYYWWD (WW= week within year, D= day within week).

In addition a number of days, months or years can be added to or subtracted from a
date.

Also the calculation of the difference between two calendar dates is supported.

In this case the result is written in number of days or as "date duration yyyymmdd"

into the output work position (OWP).

All values of the different input, output and arithmetic formats are always an 8 bytes
packed field within the work area.

11-6 QPAC-Batch Reference Manual

>>- CALENDAR (parameters) ><

Certain information must be given to the function through parameters:

parameters:

IWP=datef=wpos

+WP=datef=wpos
-WP=datef=wpos

IWP=datef=wpos

the input work position defines the original format of the
date, and the position within the work area, where an

8 bytes packed field contains the date.

When using the indicator format (IYMD= and IJUL=)
the indicator 0 is interpreted as 1900 and the indicator
1 is interpreted as 2000.

datef = date format:
YMD = YYMMDD
MDY = MMDDYY
DMY = DDMMYY
JUL = YYDDD
YWK = YYWWD
CYMD = CCYYMMDD
IYMD = 0IYYMMDD
DMCY = DDMMCCYY
CJUL = CCYYDDD
CYWK = CCYYWWD
IJUL = 0IYYDDD
WpOS = work area position

Date arithmetic work area position (optional)

the value of the 8 bytes packed field (wpos) will be added
(+WP=) to or subtracted (-wp=) from IWP. The result is
written to OwWwP. The values in wpos can also be negative.
Per CALENDAR () function this parameter is only valid
once.

When calculating the difference between the IWP date and
the -WP date the lower will be subtracted from the higher.
If the IWP date is lower then the result with OWwp=DAY or
OWP=DUR will be negative.

datef = date format:

DAY = number of days

MON = number of months

YEAR = number of years

CYMD = CCYYMMDD (only valid with "-wp=")
DMCY = DDMMCCYY (only valid with "-wp=")
WpOS

= work area position

QPAC-Batch Reference Manual 11-7

OWP=datef=wpos

WP=datef=wpos

NOABEND

WINDOW=nn|50
WDOW=

11-8 QPAC-Batch Reference Manual

The output work area position defines the resultant format
of the date and the position within the work area of an 8
byte packed field for the output.

In addition all reserved CALDR... fields are filled with their
corresponding content. This is not true if DUR or DAY has
been specified for dater .

datef = date format desired (as for TwP), plus
additionally:
DAY = difference between IWP-date and
—WP-date in number of days
DUR = difference between IWP-date and

—WP-date in the format yyyymmdd
Wpos = work area position

The converted date will be returned into its input field. The
format of the converted date is derived as follows:

YMD results in JUL
MYD results in JUL
DMY results in JUL
JUL results in YMD

The routine is a simple exchange procedure converting the
date from the common to the julian format, and vice versa.

No abend if the date is invalid.

If the input date is invalid 0 is returned in the output
field if NOABEND has been specified.

Additionally, the function code (FC=) is set to 8.

If the century is equal 00 or is not specified a window with
a year boundary of 50 is taken as the default.

This means that years before 50 are calculated with
century 20 and the years after and including 50 are
calculated with century 19.

With this parameter, the default value of 50 can be
overwritten.

WINDOW=nn|50 If the century equals 00 or is not specified a window with
WDOW= the year limit set to 50 is assumed by default. This means
that the years before 50 are calculated with century 20 and
the years before and inclusively 50 with century 19.
With this parameter the default value of 50 may be
overwritten.

CALENDAR (IWP=YMD=WPOS6000, ONP=JUL=WPOS6010)

The date will be converted from format
YYMMDD to YYDDD.

Input is in work area pos. 6000 - 6009.
Output in pos. 6010 - 6019.

CALENDAR (IWP=JUL=WPOS6010, ONP=YWK=WPOS6900)

The date will be converted from format
YYDDD to YYWWD.

Input is in an 8 byte packed field starting
at work area pos. 6010.

Output in an 8 byte packed field starting at
pos. 6900

CALENDAR (IWP=YMD=WPOS6000, ONP=DMY=WPOS6000)

The date will be converted from format
YYMMDD to DDMMYY.
The input and output areas are the same.

CALENDAR (IWP=CYMD=WPOS6000, +WP=DAY=WPOS6010, OWP=DMCY=WPOS6020)

The number of days at position 6010 are
to be added to the date at position 6000.
The result is written to position in the
format DDMMCCYY.

CALENDAR (IWP=DMCY=WP0OS6040, ~-WP=CYMD=WPOS6050, OWP=DAY=WPOS6060)

The difference between the IWP date and
the -WP date is to be calculated. The
number of days are written to position
6060 as an 8 bytes field. With
,LOWP=DUR=WPOS6060“ the result would
be stored as date duration (yyyymmdd).

Fig. 195: CALENDAR() examples

QPAC-Batch Reference Manual 11-9

CHANGEF() / CHANGER(): Replacing Character Strings

With this function character strings in data files can be searched and replaced. The
organization of the data set must allow updating. This means that it must reside on
disk and that its organization must be SAM or VSAM.

CHANGEF () reads the whole data set until EOF and writes the changed records

back.
CHANGER () processes only the record currently in the 1/O area and does not write it
back.
>>- CHANGEF (parameters) ><
>>- CHANGER (parameters) ><

The information required by the function is given to it through parameters:

parameters:

UPFn File ident to be processed.
It must be defined as an update file. For testing
purposes, the file can also be defined as 1PFn. This
causes any changes being simulated only and not being
written back.

DLM=" Delimiter for the character string definitions.

An apostrophe is taken as default.
Any other character may be defined.

'oldvalue'newvalue' Old string to be searched and new string to replace the
old one.
If the old string is shorter than the new one the following
part of the record is shifted to the right.
If the old string is longer than the new one the following
part of the record is shifted to the left and appended to
the new string.

EQ=Subroutine A subroutine can be defined to be called if the old string
is found within the record.

NE=Subroutine A subroutine can be defined to be called if the old string
is not found within the record.

OPF A printer file ident can be specified.

In this case any changes are printed to this print file and
not to QPACLIST (SYSLST).

11-10 QPAC-Batch Reference Manual

CHANGEW(): Replacing Character Strings in Work Area-Tables

With this function character strings in work area tables can be searched and replaced.
The tables must consist of elements with fixed lengths. CHANGEW () starts at the
beginning of the table and searches every element for the defined character string and

if found replaces it.

>>- CHANGEW (parameters)

><

The information required by the function is given to it through parameters:

parameters:

[WK=]WPOSnnnn:Xn
HPOSnnnn
WPOSnnnn-WPOSnnnn

WK=symbol:Xn

RL=nnn
Xn

DLM="

'oldvalue'newvalue'

Xn

Xm

EQ=Subroutine

NE=Subroutine

Work area from-to definition as a dynamic
specification of dimensions. The contents of the
index register (to) is the displacement and is added
by the function to the from value to determine the
end of the table.

Length of an element in the table, as a direct value
or as an index register.

Delimiter for the character string definitions.
An apostrophe is taken as a default.
Any valid character may be specified here.

Old string to be searched and new string to replace
the old one.

If the old string is shorter than the new one the
following part of the record is shifted to the right.

If the old string is longer than the new one the
following part of the record is shifted to the left and
appended to the new string.

Xn as the first standalone index register contains —
when entering a sub routine - the relative offset of
the element to the beginning of the table.

This parameter is optional.

Xm as the second standalone index register
contains — when entering a sub routine — in the EQ
(equal) case the offset of the value found relative to
the beginning of the element.

This parameter is optional.

X c as the third standalone index register contains —
when entering a sub routine — the element number.
This parameter is optional.

A sub routine may be defined to be called when the
old string has been found within the element.

A sub routine may be defined to be called when the
old string is not found within the element.

QPAC-Batch Reference Manual 11-11

OPF [n]

A printer file may be defined.

In this case all the changes will be printed to this
print file. Otherwise the output is sent to QPACLIST
(SYSLST) if no sub routine has been defined.

CHANGEW (WK=WP0OS10001:X1,RL=020,DLM=/, /Valuel/Value2/,

X2,X3,X4,EQ=SUBEQ)

The table in the internal work area starting from position
1001 is searched for the value1. If the value1 is found in
an element a change to value2 and the call of sub routine
SUBEQ occurs. Then the index register x2 contains the
offset of the element relative to the table's beginning, X3
contains the offset to the changed value2 and x4 contains
the element number.

CHANGEW (TABSTART:X4,RL=100, 'Valuel'Value2',NE=SUBNE, X8)

The btable starts at the field TABSTART and resides in the
hiper space. The element length is 100. If there are
elements where value1 is not found then the sub routine
SUBNE is called.

CHANGEW (HPOS1-HP0OS5001,RL=X5, 'Oldvalue'Newvalue', OPF)

This example shows a table in the hiper space. Any
elements where the value is found are listed to the print file
OPF.

Fig. 196: CHANGEW() examples

11-12 QPAC-Batch Reference Manual

COMPAREF()/ COMPARER(): Compare Files / Record Areas

This function compares the contents of the data records of two defined files and logs
discrepancies on printer output, or transfers control to an inline subroutine.

The function COMPAREF () processes the two files in their entirety, up to EOF,
including opening and closing. After exiting the function, the files are in a closed
status.

The function COMPARER () does not itself read the files. It only compares the record
areas. This function uses parameters the same way as the COMPAREF () function.

>>- COMPAREF (parameters) ><
>>- COMPARER (parameters) ><

Control information can be given to the function by parameters.

parameters:

(*) no specific parameters given.
The comparison is made for the entire record length of
both files on a 1 to 1 basis.

IPFn, IPFm Defines explicitly which input files are to be compared. If
file-id definitions are missing the function itself searches
for the first two input files and compares them. The file
names that were compared are logged after function end.

OPFn Defines the file for print output (OPF=PR) if the internal
system printer is not to be used.
If both OPFn and any subroutines (EQ=, NE= etc.) are
defined then the subroutines are called and the print output
is written.
If within a subroutine NE, R1 or R2 no print output should
be written a function code 4 (FC=4) can be set.

+1,A [,...]1 Defines the fields on which the files are to be sorted. The
+1,D function can therefore determine if records are missing. Up
to 20 sort fields can be defined.
If no SRT= sequence specification is defined both files are
read one by one.

NODUPREC Records with equal sort keys are suppressed. Only the first
record is taken.

from-to [,...] Defines which record segments are to be compared; can
be used if the two files have different record lengths but
the segments to be compared have identical start and end
positions. Up to 20 segment fields can be defined.

CHR Print out only in character format.

EQ=Subname When the two records are equal, control is transferred to
this subroutine.

NE=Subname When the two records are unequal, control is transferred to
this subroutine.

QPAC-Batch Reference Manual 11-13

R1=Subname

When the sequence control shows that only the record

from file 1 is available, a branch to this subroutine occurs.
If R1 is not defined, control goes to the subroutine defined

by NE.

R2=Subname

When the sequence control shows that only the record

from file 2 is available, a branch to this subroutine occurs.
If R2 is not defined, control goes to the subroutine defined
by NE, as long as NE is defined.

COMPAREF (*)

COMPAREF (IPF5, IPF9)

COMPAREF (SRT=1,4,2)

COMPAREF (SRT=1,4,A,10,2,D,1-80)

COMPAREF (IPF1, IPF3, OPF, CHR)

COMPARER (IPF1, IPF3, OPF, CHR)

COMPAREF (IPF1, IPF3, NE=SUBNE)

COMPARER (IPF1, IPF3, NE=SUBNE)

The first two input files are compared on
a one-to-one basis.

Input files 15 and 19 are compared.

The first two input files are compared.
Both files are sorted in ascending order
according to positions 1 - 4.

The first two input files are compared.
Both files are sorted in ascending order
according to positions 1 - 4, then in
descending order according to positions
10 - 11. Only positions 1 - 80 are
compared.

Input files 11 and 13 are compared.
Print output appears on output file OPF
in character format only.

The record areas of input files 11 and
I3 are compared. Print output appears
on output file OPF in character format
only.

The two files I1 and I3 are compared.
An inequality causes a branch to the
routine SUBNE.

The record areas of the files 11 and 13
are compared. An inequality causes a
branch to the routine SUBNE.

Fig. 197: COMPAREF() / COMPARER() Examples

11-14 QPAC-Batch Reference Manual

IDCAMS(): VSAM Catalog Functions

With this function IDCAMS utility functions can be executed directly and integrated
from within a QPAC program. The corresponding definition statements are passed to
the function from the internal work area.

This function is only available in z/OS.

>>- IDCAMS (parameters) ><

The information required by the function is given to it through parameters. Therefore
two ways are available to pass the statements to IDCAMS:

1. The statements are being passed in form of a table in the internal working
storage.
2. The statements are individually passed in an input subroutine. The routine

is called as many times until the function code 8 (FC=8) is set.
The result from IDCAMS can also be received in two different ways:

1. The output defaults to IDCAMLST if no output subroutine is specified.
If the IDCAMLST DD statement is missing it will be dynamically allocated
with output class A. Any other output class may be assigned with the
parameter SYSOUT=x.

2. The output can be received by way of an output subroutine. This
subroutine is called per line until the end is reached.

When returning from the function any occurring IDCAMS MAXCC condition code is
returned in the function return code field Fc.

parameters:

STMT=WPOSnnnn Work area position where the statements for the IDCAMS
HPOSnnnn function are stored. The statements correspond exactly to
the syntax expected by the official IDCAMS utility.
The individual statements must be stored in elements with
a length of 80 bytes. The end is marked by an /* or a
blank.

SYSOUT=x If an output subroutine definition is missing an output class
may be assigned to the dynamically allocated DD
statement.

ISU=InSubroutine Name of the input subroutine. The IDCAMS function is
calling this subroutine per individual statement. The
statement to be passed is at WPOSnnnn which is define d
by the parameter TwP=WPOSnnnn. The statements
correspond exactly to the syntax expected by the official
IDCAMS utility. With a length of 80 bytes.
The end is signaled by passing the function code 8 (Fc=8).

IWP=WPOSnnnn Work area position where the statement must be put which
must be passed by the input subroutine. It has a length of
80 bytes.

QPAC-Batch Reference Manual 11-15

OSU=OutSubroutine Output subroutine name. This routine is called per
individual result line. The result line is at WPOSnnnn which
is defined by the parameter OWP=WPOSnnnn.

The individual line has a length of 121 bytes with leading
ASA control character.

OWP=WPOSnnnn Work area position that contains the result line, which is
received by the output subroutine, in a length of 121 bytes.

IDCAMS (IWP=WPOS7001, ISU=INSUB, OWNP=WPOS5200, OSU=0UTSUB)

SUB-INSUB
IF X1 = 0 THEN
SET WPOS7001,CL80 = ' LISTCAT ALL ' X1+1
ELSE FC=8
IFEND
SUBEND

SUB-OUTSUB
PUTLST
SUBEND

Fig. 198: Example 1 IDCAMS()

SET WPOS7001,CL80 = ' LISTCAT ALL '
SET WPOS7081,CL80 = '/*'

IDCAMS (STMT=WPOS7001, OWP=WP0OS5200, OSU=0UTSUB)
SUB-OUTSUB

PUTLST
SUBEND

Fig. 199: Example 2 IDCAMS()

SET WPOS7001,CL80 = ' LISTCAT ALL '
SET WPOS7081,CL80 = '/*!'

IDCAMS (STMT=WPOS7001, SYSOUT=T)
IF FC NOT = 0 THEN ...internal MAXCC code ... IFEND

Fig. 200: Example 3 IDCAMS()

11-16 QPAC-Batch Reference Manual

IEBCOPY(): z/OS Utility Functions

This function allows the IEBCOPY utility functions to be directly executed from within
any QPAC program. The definition statements necessary are given to the function in
the internal working area.

This function is only available under z/OS.

>>- IEBCOPY (parameters) ><

The information required by the function is given to it through parameters.
There are two ways for doing this:

1. The statements are prepared as a table in the working storage area
(sTMT=...).
2. The statements are individually prepared in an input sub routine.

This sub routine is called until the function code 8 is set (FC=8).

A //SYSIN DD .. statement must NOT be present when using this function. The
QPAC program definition statements must be read in via the //QPACIN DD ...
statement.

The results from IEBCOPY can also be received in two ways:

1. The output is returned over the SYSPRINT statement if nothing special is
defined and a //SYSPRINT DD .. statement does exist.

2. The output can be received through an output sub routine. This sub routine is
called per line until the end has been reached. In this case NO //SYSPRINT
DD.. statement must exist.

When returning from the function any occurring IEBCOPY return code is returned in
the function return code field FcC.

parameters:

STMT=WPOSnnnn work area position where the statements for the IEBCOPY
HPOSnnnn function are stored. The statements correspond exactly to
the syntax that the official IEBCOPY utility is expecting.
The individual statements are to be stored in a length of 80
bytes. The end has to be marked by a /* or blank line.

ISU=InRoutine name of the input sub routine. The IEBCOPY function does
call this sub routine per statement. The statement to be
passed is at WPOSnnnn, which is defined by the
IWP=WPOSnnnn parameter. The statements correspond
exactly to the syntax that the official IEBCOPY utility is
expecting, with a length of 80 bytes.

The end is signalled by setting the function code 8 (FC=8).

IWP=WPOSnnnn work area position where the statement given by the input
sub routine has to be put, with a length of 80 bytes.

OSU=OutRoutine name of the output sub routine. This routine is called per
result line. The result line is at WPOSnnnn, defined by the
OWP=WPOSnnnn parameter. The individual line has a
length of 121 bytes with a leading ASA control character.

QPAC-Batch Reference Manual 11-17

OWP=WPOSnnnn work area position where the result line from the output
sub routine is put, in a length of 121 bytes.

SVC2.. If the program IEBCOPY is APF protected the SVC of an
SVC type 3 routine can be specified with this parameter to
temporarily switch to APF mode. See the example of such
a routine that comes with the product.

IEBCOPY (IWP=WPOS7001, ISU=INSUB, OWP=WP0S5200, OWP=0SU)
SUB-INSUB
IF X1 = 0 THEN
SET WPOS7001,CL80 = ' COPYMOD INDD=IN, OUTDD=OUT'
X1+1
ELSEIF X1 =1
SET WPOS7081,CL80
X1+1
ELSE FC=8
IFEND
SUBEND

! SELECT MEMBER=ANYNAME !

SUB-0SU
PUTLST
SUBEND

SET WPOS7001,CL80 ' COPY INDD=SYSUT1,O0UTDD=SYSUT2 '
SET WP0OS7081,CL80 = '/* !
IEBCOPY (STMT=WPOS7001, OWP=WPOS5000, 0SU=0UTSUB, SVC235)

SUB-OUTSUB
PUTLST
SUBEND

SET WPOS7001,CL80 = ' COPY INDD=INPUTDD,OQUTDD=OUTPUTDD'

SET WP0OS7081,CL80 = '/* !
IEBCOPY (STMT=WPOS7001)

IF FC NOT = 0 THEN ...internal IEBCOPY return code ... IFEND

Fig. 201: IEBCOPY() examples

11-18 QPAC-Batch Reference Manual

PRINTF() / PRINTR(): Print File /| Record Areas

The function PRINTF () prints the entire input file, update file or MQSn in
character/hexadecimal format in an easy to read edited form. The function analyzes
the record format considering the file definitions for fixed, variable, or undefined
record format. For MQSn the GEToptions browse and truncation are internally set.

The function PRINTR () prints the current contents of the record area of the input
file, which is either defined by parameter, or found by the function itself. The
contents of the record area are not changed.

The function PRINTR () itself does not read records, but assumes that read
commands are issued prior to the calling of the function. This function uses
parameters in the same way as PRINTF ().

>>- PRINTF (parameters) ><
>>- PRINTR (parameters) ><

Control information can be given to the function through parameters.

parameters:

(*) no detail parameters given. Print-out is according to
default values i.e. the function takes the first input file,
update file or MQSn it finds in the definition, and prints
it in character/hex format.

IPFn | UPFn | MQSn defines explicitly the file to be printed.

OPFn defines the file for print output if the internal system
printer (QPACLIST, SYSLST) is not to be used.

CHR print-out only in character format.

PRINTF (*, OPF) The first input file that is found in the file definitions is
printed to OPF.

PRINTF (IPFO) Input file TPF5 is printed

PRINTF (OPF3) The first input file that is found in the file definitions is
printed on output file OPF3=PR

PRINTF (I1,CHR) Input file IPF1 is printed in character format only.

PRINTR (I1,CHR) The record area of input file TPF1 is printed in
character format only.

Fig. 202: PRINTF() / PRINTR(*) examples

QPAC-Batch Reference Manual 11-19

PRINTW(): Print Work Area, Hiper Space or External Area

This function prints the contents of the work area, the hiper space or the external
area in hexadecimal and character format. It is possible to print all or only a part of
the area.

The function does not alter the contents of the work area.

>>- PRINTW (parameters) ><

Within the parameter definition a part area can be specified, as can further
instructions for the function.

parameters:

(*) no detail parameters.
The whole work area will be printed on the system
printer (QPACLIST, SYSLST)

OPFn the output channel 0PFn should be used instead of

SYSLST

[WK=]WPOSnnnn-WPOSnnnn
HPOSnnnn-HPOSnnnn
XPOSnnnn-XPOSnnnn

print from area position nnnn to area position nnnn,
instead of the whole area

[WK=]WPOSnnnn:Xn print from area position nnnn up to the position defined
HPOSnnnn:Xn by index register Xn. Xn contains a displacement value,
XPOSnnnn:Xn and this value is added to the start value to determine

the area end position.

PRINTW (*) The whole work area will be printed.

PRINTW (OPF, WPOS5000-WPOS9000) The first 4000 bytes of the work area
will be printed on file OPF

PRINTW (HPOS10000:X1) Index register 1 contains a
displacement value which is added to
10000 to give the end limit up to which
the work area is to be printed.

Fig. 203: PRINTW() examples

11-20 QPAC-Batch Reference Manual

SCANF()/ SCANR(): Scan File / Record Area

The function SCANF () scans an input file for a given character string. Records that
contain the string are printed.

The function SCANR () scans the current contents of the record area of an input file,
the file being either previously defined or found by the function itself. The contents of
the record area will not be altered.

The function SCANR () itself does not read records, but assumes that a read
command has been executed. This function corresponds to the SCANF () function in
its use of parameters.

>>- SCANF (parameters) ><
>>- SCANR (parameters) ><

Control information must be given to the function through parameters.

parameters:

DLM=" delimiter character
This parameter is optional and defines the string delimiter
character. Default is ' (apostrophe).

IPFn explicitly defined input file to be scanned. If missing, the
function itself searches for the first file in the file
definitions.

character or hex string between the delimiters, to be used
Xr.o.o! for the scan. String size cannot exceed 100

characters. If a hex string is defined the parameter DLM= is
invalid.

from-to [,...] record scan area.
String is only scanned for in the record area delimited by
the from and to positions.

CAPS=0OFF |ON When cAPS=0FF is defined the text is searched for lower-
and upper-case letters. If the scan string is defined as a
hex string CAPS=0N is automatically set. Otherwise, the
text is searched as defined. CAPS=0FF is the default.

CHR records containing the string are printed out in character
format only.

NOPRINT records are not printed out, but as in all cases, the total
number of records fulfilling the scan condition is output
after the function exit.

EQ=Subname control is passed to this subroutine if the sought-after
string is found. The first index register, if specified,
contains the offset to that string.

Xnn the first index register, if specified, contains the offset of
the search argument.

Xnn if the string is found more than once a second index
register (counter) contains the number of hits.

QPAC-Batch Reference Manual 11-21

NE=Subname control is passed to this subroutine if a record is found not
containing the defined search value.

SCANF ('CHARACTERS') Scans the first found input file for the
value CHARACTERS.

SCANF (DLM=*, *CHARACTERS*) Same as above, except the delimiter
character is specified as * .

SCANF (IPF5, 'CHARACTERS',CHR) |Inputfile IPF5 is scanned for the value
CHARACTERS. Found records are
printed out in character format only.

SCANF (IPF5, '"CHARACTERS', NOPRINT)

Same as above but records are not
printed. (The total number of found
records is output after function end).

SCANF (DLM=:, : CHARACTERS:,20-80)

Only positions 20-80 of each record are
scanned.

SCANR (' CHARACTERS ', EQ=SUBR, X9, X10)

A branch to the routine ROUTINE occurs
for every record that contains the term
CHARACTERS. Index register x9
contains the offset.

Fig. 204: SCANF() / SCANR() examples

11-22 QPAC-Batch Reference Manual

SCANW(): Scan Work Area Table

This function scans the elements of a table which exists in the working storage area.
The contents of the area will not be altered.

>>- SCANW (parameters) ><
parameters:
DLM=" delimiter character, Default is ' (apostrophe)

[WK=]1WPOSnnnn-WPOSnnnn

WPOSnnnn:Xn
fieldl-field2
fieldl:Xn

RL=nnnn

CAPS=0FF|ON

CHR

EQ=Subname,Xni, Xn:

NE=Subname,Xn:

OPFn

table area in working storage, hiper space or single field.
The table end may be specified by an index register which
contains the offset.

character or hex string between the delimiters, to be used
for the scan. String size cannot exceed 100 characters.
If a hex string is specified, the parameter DLM= is invalid.

table element length

When CAPS=0FF is defined the text is searched for lower-
and upper-case letters. If the scan string is defined as a
hex string CAPS=0N is automatically set. Otherwise, the
text is searched as defined. CAPS=0FF is the default.

print output in character format

control is passed to this subroutine if the sought-after
string is found. The first index register contains the
element number, and the second index register contains
the offset within the element that contains the searched
string.

subroutine to be branched to if a record NOT containing
the string is read.

printer output

SCANW (' CHAR', WK=WPOS1-WPOS1000,RL=100)

Searches the table elements with a
length of 100 for the string CHAR.

SCANW (DLM=*, *CHARACTERS* ...) The asterisk is the delimiting
character.
SCANW ('CHAR',EQ=SUBR, X1,X2 ...) The subroutine SUBR will be

branched to every time an element is
found containing the string CHAR.

Fig. 205: SCANW() examples

QPAC-Batch Reference Manual 11-23

SEQCHK(): Sequence Check

This function reads the entire input file and checks the sequence. The necessary
information to process this function is obtained from parameters.

The function opens the file (if not already open) and processes it up to end of file.
Sequence errors are reported by a printout of the two records in error, the last read

record forming the basis for continuation. Records with equal sort values are
considered to be valid.

>>- SEQCHK (parameters) ><

Various elements of control information must be given to the function by parameters:

parameters:

IPFn explicit specification of the file to be checked. If this
definition is present, it must precede the sort parameters.

SRT=s,1,A [,....]
s,1,D This parameter is compulsory.
It defines the fields on which the sequence check must
operate.

sort field position within the record
length of the field in bytes
ascending sequence order

= descending sequence order

O » =0

Up to 5 fields can be defined.

OPFn Defines the output file (printer) for error records, replacing
the internal system printer.

NOPRINT Print-out of error records is suppressed. In all cases the
number of found errors is reported at function end.

EQ=Subname A branch to this routine occurs if two records with the
same sort criteria are found.

LT=Subname A branch to this routine occurs if the sort criteria of the first
record is less than that of the second record.

GT=Subname A branch to this routine occurs if the sort criteria of the first
record is greater than that of the second record.

11-24 QPAC-Batch Reference Manual

SEQCHK (SRT=1, 4,A)

SEQCHK (IPF5, SRT=10,3,4,2,5,D)

SEQCHK (SRT=15, 9, D, NOPRINT)

SEQCHK (SRT=1, 4,A,EQ=ROUTINE)

The first input file that is found in the file
definitions is sequence checked in
ascending order according to the
positions 1 - 4 of the record.

Input file IPF5 is sequence checked:
- position 10, length 3, ascending
- position 2, length 5, descending

The first input file that is found in the file
definitions is sequence checked in
descending order according to the
positions 15 - 23 in the record.

Error records are not printed out.

Records are tested to see if they have
the same sort criteria.

Fig. 206: SEQCHK() examples

QPAC-Batch Reference Manual 11-25

SETIME(): Set Time Interval

This function can set a time interval, after which processing jumps to a pre-defined
routine, or for the duration of which, processing remains in a waiting state.

>>- SETIME (parameters) ><

Certain control information must be given to the function through parameters:

Parameter:

INTERVAL=nn This defines the time interval.

IV=nn Processing continues after the interval. Current processing
will be stopped, and processing in the pre-defined
subroutine will commence.

After leaving the subroutine, processing recommences at
the interrupted point.

WAIT=nn This defines the time interval.
Processing halts and waits until the end of the interval.
Processing then resumes within the pre-defined subroutine
(if defined). After leaving the subroutine, processing
continues with the instructions directly following the
function.
In z/OS the time interval is defined in hundredths of
seconds.

SU=Subname Defines the in-line subroutine to which processing jumps
when the time interval has elapsed. The definition of the
subroutine is optional.

However, 1v= without a subroutine is meaningless.

11-26 QPAC-Batch Reference Manual

SNAP(): Snapshot of QPAC Fields and Registers

With this function it is possible to take a snap shot of workfields at any time of
QPAC execution. This information is very useful for tracing and problem analysis. In
case of a program check QPAC automatically performs this function.

>>- SNAP (parameters) ><

The information required by the function is given to it through parameters:

parameters:

(*)

OPFn

XR

ACCU

I0

SYM

no detail parameters given. All types of fields that are used
and have a value not equal to zero are printed on the
system line printer.

defines the file for print output if the internal system printer
(QPACLIST, SYSLST) is not to be used.

print only the contents of all used index registers whose
contents is not equal to zero.

print only the contents of all used accumulators whose
contents is not equal to zero.

print only the 1/0O areas of all used file definitions whose
contents is not equal to zero.

print only the contents of all used symbols.

SYM=fieldl/field2 printonly the contents of the field symbols specified.
=field*
=f+eldl

* represents one or more positions not to be tested
+ represents one position not to be tested

I00 001
051
000 001
051
101

SNAP (XR, ACCU, I0)

INDEX REGISTER DISPLAY
ALL ZERO

ACCU FIELDS DISPLAY
ALL ZERO

I/0 AREAS DISPLAY
D8D7C1C340E3C8C540D6D5C540C1D5C440D6D5D3E8404040
E2D6C6E3E6C1DI9C540D7C1C3D2C1C7C540C6D9D6D440
D6E2E8E240C7D9C1D5C440D3E4C540404040404040404040
40
4040404040404040404040404040404040

Fig. 207: Sample SNAP() output

QPAC-Batch Reference Manual 11-27

SORTF(): Sort File

This function sorts one or more input files into one output file during the execution of
a QPAC program.

The function internally uses the IBM SORT program (or the compatible sort program
of other manufacturers).

The input and output files are opened and closed by the function. After function
execution they are in closed status.

>>- SORTF (parameters) ><

A minimum of necessary control information must be given to the function by

parameters.
parameters:
IPF[n], UPF[n] explicitly defines the input files to be sorted. If this
parameter is missing, the function uses all the input files.
OPF [n] defines explicitly the output file for the sorted file. If this

parameter is missing, the function itself searches for the
first defined output file.

SRT=s,1,A [,...]

defines the fields on which the SORT must operate. This

parameter cannot be omitted.

If no other parameters are defined, the following occurs:

e all present input files are assumed to be input files for
the SORT

e the first output file definition is assumed to be the file
definition for the sorted output file

e the format of the SORT fields is assumed to be BT
(binary)

e the number of work files is 1

SRT=s,

(O
B
o
g —

sort field definitions can contain field format attributes £
which replace the default format BT.

Valid format attributes are:
CH, 7D, PD,FI,BI,FL,Y2B,Y2C,Y2D,Y2P,¥Y2S,Y27%.

NODUPREC Records with equal sort keys are suppressed. Only the first
record is taken (SUM FIELDS=NONE).

MSG indicates that all the usual SORT messages should be
issued on SYSOUT. Per default only error messages are
issued.

NOABEND the function will normally terminate once an error has
occured. To avoid any early break in processing, the
NOABEND parameter can be given, whereby, after an error
has occurred, the function returns to its CALL point and
sets the return code to 'not equal’' 0. The return codereturn
code can then be examined,

11-28 QPAC-Batch Reference Manual

WORK=n

WORKNM=xxxx

Y2PAST=yyyy

IF RC NOT = 0 THEN

and the function reCALLed with altered parameters.

it is assumed that no external work files are necessary, as
the input can be sorted within main storage. However,
when a large file is input, the number of required
SORTWHKn files can be defined by the WORK=n parameter.
A corresponding number of DD statements (SOTWK1-9)
must also be present.

when work files are used, the default file name is
SORTWKn. The WORKNM=xxxx parameter enables the first
4 characters of the file name to be altered:

WORKNM=QPAC

results in QPACWK1, QPACWK?2 etc.

this parameter defines the actual century window. See the
corresponding SORT literature.

SORTF (SRT=1, 3,A)

All input files found by the function are
sorted and output onto the first found
output file.

SORTF (SRT=1, 3, PD, A) Same as above, but field format is packed

decimal.

SORTF (OPF5, SRT=10,4,D,1,5,A) Allinput files are sorted onto output file

OPF'5

SORTF(I1,15,05,SRT=7,9,CH,A) The inputfiles 11 and 15 are sorted onto

output file OPF5. After the sort, 11,15 and
OPF5 are in a 'closed' state.

Fig. 208: SORTF() examples

QPAC-Batch Reference Manual 11-29

SORTR(): Sort Records

This function sorts records given to it by an internal subroutine. After the sort, the
records are returned using another internal subroutine.

The function uses the IBM SORT internally (or the compatible sort of other

manufacturers).

The function itself does not read the records but assumes that they will be supplied.
The sort parameter rules are the same as for SORTF () .

>>- SORTR (parameters) ><

The required control information must be given to the function through parameters.

parameters:

ISU=name

OSU=name

SU=name

IWP=nnnn

OWP=nnnn

WP=nnnn
RL=nnn
RL=Vnnn

NODUPREC

11-30 QPAC-Batch Reference Manual

name of the input subroutine which will fetch the records
for the sort, until FC (function code) = 8, which indicates
that no further records will be supplied. The sort then takes
place.

Within the input subroutine no Go. ... commands are
permitted. The return to the sort program assumes a valid
SUBEND.

To cancel any sort process the function code can be set to
16 within the input subroutine (FC=16 instead of FC=8).
After this no sorting is done and the SORTR function is left.
FC=16 remains and may be tested.

name of the output subroutine which accepts the records
after the sort. This routine is called again and again, until
all records are given back.

instead of 1SU= and 0SU=, a common routine can be
defined. The user must therefore control the input/output
cycle in the subroutine himself.

input work area position in which the function expects the
records after the input routine is completed.

output work area position into which the function returns
the records for the output routine, after the sort.

instead of TWwP= and OWP= a common area can be defined.
length of the records to be sorted.

maximum length with variable record lengths

see under SORTF ().

sort field definitions

The format of these definitions corresponds to those of
SORT, with or without the field format attribute r.

If no field format attribute is given, format BI will be

assumed. Valid format attributes are :
CH, 7D, PD,FI,BI,FL,Y2B,Y2C,Y2D,Y2P,Y2S,Y27.

MSG

WORK=n

WORKNM=xxxx

Y2PAST=yyyy

this parameter specifies that SORT messages will be
output via SYSOUT.

number of SORTWK files (see SORTF ()).

changes the first 4 positions of the SORTWK file name
(see SORTF ()).

This parameter defines the actual century window. See the
corresponding SORT literature.

SORTR (ISU=

INPUT, OSU=OUTPUT, WP=WPOS7001,RL=800, SRT=1, 3, A)

SUB-IN

SUBEND

move record to position 7001
or set FC=8 (no following records)

PUT

SUB-0U

SUBEND

read record from position 7001 and processing

TPUT

Fig. 209: SORTR() example with two defined subroutines

SORTR (SU=ROUTINE, WP=WP0OS7001,RL=50, SRT=1, 3, PD, A, MSG)

SUB-ROUTINE
IF X1 = 1 THEN

ELSE

(input phase)
FC=8 Xl1=1 (end of input)
IFEND
SUBEND

(output phase)

Fig. 210: SORTR() example with one defined subroutine

QPAC-Batch Reference Manual 11-31

SORTW(): Sort Work Area

This function will, for example, sort tables in the internal work area or in the hiper

space.

>>- SORTW (parameters) ><

The required control information must be given to the function through parameters.

parameters:

[WK=]WPOSnnnn-WPOSnnnn
HPOSnnnn-HPOSnnnn

[WK=]WPOSnnnn:Xn
HPOSnnnn:Xn

RL=nnn
Xn

SRT=s, 1,A
s,1,D

NODUPREC

from-to area definition, delimiting the area to be
used. The fo address element is not included in
the sort.

from-to area definition - dynamically defined.

This defined area will be sorted. When an index register
limit is given, the contents of the register are taken as a
displacement and added to the from value. The to address
element is not included in the sort.

The key word WK= is optional.

length of one element in the area, as a direct value or as
an index resgister.

sort field definitions - up to 5 fields can be given. The field
attribute is not allowed.

Duplicates will be overwritten with Hex'FF' and be sorted to
the end of the work area.
A possible index register will be decreased accordingly.

SORTW (WPOS6000-WPOS7000,RL=10, SRT=1,8,A)

The fields in the internal work area
starting at address 6000 are sorted in
ascending order.

SORTW (WPOS5000:X1,RL=80, SRT=5,10, D)

Records with a length specified by x1
starting at address 5000 in the internal
work area are sorted in descending order
according to positions 5 to 14.

SORTW (HPOS1:X1,RL=80, SRT=5,10,A,1,4,D,50,1,A)

Records with a length specified by x1
starting at address 1 in the hiper space
are sorted. Positions 5-14 in ascending
order, 1-4 in descending order and
position 50 in ascending order.

Fig. 211: SORTW() examples

11-32 QPAC-Batch Reference Manual

Chapter 12. DB2 Support Feature

DB2 Data Base Definition

IBM DB2 is fully supported by this feature. It assumes, that DB2 is installed, and that
there is access to the DB system.

General Format of DB2 DB Definition

o7

>

IDB[n
UDB[n
ODB[n

1=
1=
1=

TBN=XXXXXX |_ >
}7 , SCOL=xxX/ XXX J

><

|—,ORDBY=xxx(D)/xxx(A)J L,options J

TBN=

SCOL=

Is the table or view to be processed.
The follwoing items may be specified:

e Location (for distributed databases)
e Creator

e Table name

IDBn=TBN=LOCATION.CREATOR.TABLENAME

Fig. 212: Unique specification of a table object

The table name can also be a synonym.
This definition must be the first operand. This tells QPAC that
this data base is to be processed by DB2.

selected column names.

Thereby, the required columns from the table row can be
selectively processed.

It functions as though only these columns are present. Column
names are separated from each other by a slash:

SCOL=COLUMN1/COLUMN10

Fig. 213: Selection of multiple columns

If there is not room for all the names within the statement,
continuation on the following line is achieved by the definition of
a slash followed by a space in the current statement. The next
column name is then defined in the following statement:
Leading blanks are allowed.

SCOL=COLUMN1/
COLUMN10

Fig. 214: Selection of multiple columns (cont.)

QPAC-Batch Reference Manual 12-1

ORDBY=

SCOL= can only be defined with IDB or UDB.
With 0DB, the whole row must always be processed.

ORDER BY clause.

This defines the order into which the rows or selected columns
are to be sorted. In this sort sequence, the rows are made
available. Column names are separated from each other by a
slash.

ORDBY=COLUMN1/COLUMN10

Fig. 215: Sort of rows and selected columns

If there is not room for all the names within the statement,
continuation on the following line is achieved by the definition of
a slash followed by a space in the current statement.

The next column name is then defined in the following statement.
Leading blanks are allowed.

ORDBY=COLUMN1 /
COLUMN10

Fig. 216: Sort of rows and selected columns (cont.)

A column can also be sorted in descending order. The type of
sort can be defined in brackets following the column name:

COLUMN1 (D) / means descending
COLUMNZ (A) / means ascending.
The default is (A).

ORDBY=COLUMN1/COLUMN10 (D) /COLUMN20

options

WP=nnnnn

FCA=

12-2 QPAC-Batch Reference Manual

Fig. 217: Sortieren von Columns aufwérts oder abwérts
ORDBY= can only be defined with IDB.
The following additional options are available:

Work area position.

This definition states that the row should be written into, or read
from, the general work area. The definition refers to the place
within the work area that is to be overlaid by the row to be
processed. If wp= is defined, there is no dynamic record area for
the corresponding file definition.

File communication area.

This defines which position within the general QPAC work area
should contain the information exchange area for the respective
file definition. The default form of FCA definition is dynamic.

With the FCA the following implicit symbols are predefined and
can be used as required:

. .SQLCODE, BL4 return code
. .ROWLEN, BL4 length of the row read
..TBN,CL18 = table name

RC=YES Return code.
With this definition, any error from DB2 will not result in a QPAC
processing halt, but the original SQLCODE in the FCA field
. .SQLCODE will be transferred to the program.

-927

Fig. 218: SQL return code in FCA field ..SQLCODE

If there is no error, the return code in the FCA field . . SQLCODE
is 0.

It is important to check the return code in the FCA within the
application, if this operand is defined.

IF I1SQLCODE = -927 THEN
IF I2SQLCODE NOT = 0 THEN

Fig. 219: Examining the SQL return code

PRFX=YES Prepare for symbol prefix.
This option can be defined when different tables with the same
column names are given.
Thereby, to create a field symbol, the file identification (short
form) is placed in front of all column names.
This avoids the 'duplicate symbol' problem.

CAF Support instead of the TSO Batch Program IKJEFTO01

The PLAN name and the DB2 system id may be specified with a PARM= definition.
This will internally initialize CAF support instead of using the TSO batch program
IKJEFTO1.

PLAN=planname
Plan name if QPAC is not called under the TSO batch program
IKJEFTO1.

DB2ID=sysid DB2 system id if QPAC is not called under the TSO batch
program IKJEFTO1.
See also under DB2 job control example.

CAF Return Codes and Reason Codes

CAF return and reason codes are to be found in the IBM manual Application
Programming and SQL Guide under "CAF Return Codes and Reason Codes".

QPAC-Batch Reference Manual 12-3

Usage of DB2 Data Bases

In z/OS the processing by QPAC is based on a DB2 DBRM called QPACBDB2, an
application plan and the QPAC interface QPACBDB2.

The interface QPACBDB2 must be defined as a program within the plan. The tables
can then be processed.

QPAC works on the basis of dynamic SQL. But, to a great extent, it finds its own
bearings.

Within z/OS up to 39 DB2 file definitions can be made, and they must have either a
file identification 1-39, or they must be defined by the implicit format.

Please note: Identification numbers 1-9 are declared without "WITH HOLD" and
the implicit format and identification numbers 10-39 are declared with "WITH

HOLD".
IDB= ODB= UDB=
IDB1l= ODB8= UDB3=

Fig. 220: DB2 file definitions

QPAC automatically defines and associates internally the original column names as
field names, together with the respective lengths and format attributes.

These field names are attached in the order that they are present in the I/O area, as
the individual columns in a row are defined.

Variable fields (VARCHAR, LONG VARCHAR) are defined with a leading 2 byte
binary field in the 1/O area. The column name, however, points to the beginning of
the field. The leading 2 byte length field has its own name associated with it,
consisting of the column name, followed by a hash sign (#).

COLUMN1,CL1000 (column name)

COLUMN1#, BL2 (length byte)

Fig. 221: Variable fields with 2 bytes length field

These automatically associated field names can be referenced in the processing.
The relative associations can be seen on the XREF cross-reference list.

12-4 QPAC-Batch Reference Manual

Columns with attribute NULL YES, i.e. they can be NULL, have an additional field
association:

A dynamically associated 2 byte binary field, consisting of the column name followed
by an at sign (@), is associated as a field name, and can be used to control the
NULL condition. If this indicator field is set to -1 after a read operation, the content of
the column is taken as NULL. If this indicator field is set to -1 before an output
operation, the content of the column is output as NULL.

SET COLUMN10@ = -1
IF COLUMN10@ = -1

THEN (the column content is NULL)

Fig. 222: Handling the NULL state

If the indicator field (@) for a column is set to -1 (NULL) following a read, and the
column field contains a value, then the indicator field must be set to 0, in order to
indicate a NOT NULL status. Otherwise, the NULL status would be present if a
REWRITE were to be processed.

SET COLUMN10@ = O

Fig. 223: Releasing the NULL state

Floating Point

Columns with the FLOAT attribute (floating point, short or long precision) can be
processed by QPAC.

a) A field with the FLOAT attribute will automatically be converted into a
displayable format by the SET instruction, and then be put into a character
field.

SET WPOS7000,CL20 = COLUMN_ FLOAT

Fig. 224: Processing of SQL floating point fields

The result is a floating-point number in the following, left justified, format:

+0.5925E+02

Fig. 225: Display format of an SQL floating point number

b) If a field with the FLOAT attribute is to be filled with a SET instruction, the
sending part is a character field, containing a floating-point number, or a
character literal with the format of a floating point number.

The floating point number in character format will automatically be converted
and stored into the column field.

SET COLUMN_ FLOAT = WPOS7000,CL20
SET COLUMN_ FLOAT +0.5925E+02
SET COLUMN FLOAT = '+0.5925E+02'

Fig. 226: Displaying SQL floating point numbers

QPAC-Batch Reference Manual 12-5

There is no further support of floating-point arithmetic within QPAC.

If the same table is stated in more than one file definition, a 'duplicate symbol’
situation occurs, due to the automatic field symbol association of column names. The
same thing would happen if the same column names were present in different tables.

This situation can be avoided by defining the operand PRFX=YES in the file
definition. With this definition, each column name which is associated as a field
symbol, is preceded by the file identification (short form). The symbol names are
thereby clearly identified and unique.

IDB1=TBN=TABLE1l, PREFX=YES
IDB2=TBN=TABLE1l, PREFX=YES

IF I1COLUMN1 =
IF I2COLUMN1 =

or

IDB1=TBN=TABLEX
IDB2=TBN=TABLEX, PREFX=YES

IF COLUMNX =
IF I2COLUMNX =

Fig. 227: PRFX=YES prevents from "Duplicate Symbol" situations

ﬂg This prefix association is only for field symbols, and not for other
column definitions, e.g. SCOL=, ORDBY= or WHERE-Dn conditions etc.

The purpose of the FCA is for the exchange of any necessary information between
the processing program and DB2. It is therefore mainly concerned with return codes.

The FCA for DB2 has the following format:

Bytes 4 e 4 e 18
Offset |0 12 46
return code (RC) row length table-
. .SQLCODE . .ROWLENG name
. .TBN

Fig. 228: FCA for DB2

12-6 QPAC-Batch Reference Manual

RC
row length
table name

DB2 return code in binary format as a negative value.
e.g. -927

This return code is only placed in the FCA if the operand RC=YES
is defined in the file definition. Otherwise, an SQL error
automatically causes a processing halt. This would be the normal
case.

The field has the symbol . .SQLCODE, BL4 assigned to it.

This is the length of the complete row, (all the columns together
in the 1/O area), including any length bytes for VARCHAR
columns.

The field has the symbol . .ROWLENG, BL4 assigned to it.

This is the name of the table to be processed (see also TBN=).
The field has the symbol . .TBN, CL18 assigned to it.

QPAC-Batch Reference Manual 12-7

Hints on Processing Logic

Basically, a table (or individual rows from a table), can be read (1DB with the GET
command), modified (UDB with the GET - PUT command sequence), or written (ODB
with the PUT command).

Additions of rows to, or deletions of rows from an existing table, are allowed in
update mode (UDB).

Processing is carried out sequentially row-wise, in the order DB2 supplies them, as
long as the ORDER BY clause (ORDBY=) is not defined.

The individual columns of a row are made available in a row together in the I/O area.
The fields can be addressed using their column names. It is also possible, (but not
necessarily recommended), to address the individual fields directly, e.g. using
implicit symbol association:

I1POS1,CL80

Fig. 229: Not recommended: direct addressing of columns

If only GETs are used (IDB definition), processing is from the beginning to the end of
the table. This corresponds internally to the following function sequence:

DECLARE ,
OPEN table ..,
FETCH ...,
CLOSE table.

If instead of 1DB (input DB2 data base table) UDB is defined (update data base
table), the command sequence GET PUT corresponds to the following function
sequence:

DECLARE ... FOR UPDATE OF ...,
OPEN ...,

FETCH ...,

UPDATE WHERE CURRENT OF ,

CLOSE ...

12-8 QPAC-Batch Reference Manual

The WHERE Instruction

A table can be prepared for selective processing by using the command WHERE.
This corresponds in meaning to the WHERE clause in a SELECT statement for an
SQL definition.

The WHERE instruction has the following two formats:

important!
Z—
>>- WHERE—id-—-condition-J—; ><
>>- WHERE-id-WPOSnnnn,length ><
>>- WHERE-id-symbol[,length] ><

The conditions must have the exact format of the WHERE clause in the SELECT
statement. A semi-colon (;) defines the end of all the condition definitions.

The condition definitions are internally accepted in the defined format, and are
syntax checked by DB2 itself. An exception to this are host variables that are
possibly present in a condition.

A host variable is originally identified by a preceding colon (:). Any host variables
present will have their content resolved when the command is executed. The host
variable itself must be a defined field at the time the program is translated (syntax
checked). Otherwise, the error 108 (undefined symbol) will occur.

The second format allows the WHERE conditions to be dynamically put into the
defined field symbol or area during execution. These conditions must NOT contain
any host variables. They can no longer pass any syntax analysis at this moment.
Also, the terminating semicolon (;) is not allowed.

The WHERE command is a preparatory command. If more than one row is present,
those fulfilling the selection criteria are made available individually by the following

GETs.
WHERE-I1 COLUMN10 = 'name' AND
COLUMNS > :X28 ;
NORMAL

GET-I1 (only rows whose columns fulfill the
above conditions appear here)

Fig. 230: Usage of the WHERE instruction (example 1)

WHERE-I1 COLUMN10 = 'name' AND
COLUMNS5 > :X28 ;

DO-FOREVER
GET-I1 AT-EOF DOQUIT ATEND
(only rows whose columns fulfill the
above conditions appear here)

DOEND

Fig. 231: Usage of the WHERE instruction (example 2)

QPAC-Batch Reference Manual 12-9

0S=WHEREAREA, CL100
SET WHEREAREA = 'COLUMN10 = "name" AND '/
'COLUMNS > 116 !

WHERE-I1-WHEREAREA

Fig. 232: Usage of the WHERE instruction (example 3)

The WHERE command contains an OPEN if the current file state is "closed".

The FETCH Instruction

Instead of the GET instruction also the FETCH instruction may be used. The

difference is that in case of an EOF situation no automatic close is done and no
GET-Block is skipped.

>>- FETCH-Id ><

The PUTA Instruction

With the PUTA command (put addition) a complete row can be inserted into a DB2
table. The individual columns must be filled with data in the 1/O area, prior to the
PUTA, and must conform to the format and convention of DB2. Null values must be
identified with the column name@ and a value of -1.

For VARCHAR fields, the actual string length must be given in the field column
name# (2 bytes binary). The maximum field size is always assigned in the 1/0O area.
A column following a VARCHAR field is therefore always placed next to the
maximum possible length.

10 XXXXXXXXXX next
column

n 2 254

VARCHAR e.g. maximum 254 bytes

content covers only 10 bytes (column name),
length byte for VARCHAR contains 10 (column
name#)

Fig. 233: String length specification for VARCHAR fields

PUTA is only allowed in update mode (UDB=).

12-10 QPAC-Batch Reference Manual

The PUTD Instruction

Individual rows can be deleted from a table. The row to be deleted must be read by
a GET prior to being deleted, i.e. the PUTD command deletes the last row read.

PUTD is only allowed in update mode (UDB).

PUTD ist nur im Updatemodus (UDB=) maoglich.

The ODB= Definition (initial loadlnitial Load)

The existing rows in a table are deleted when the table is opened. In this case,
the PUT command inserts new rows into the table, without the old rows remaining.
The individual columns in the row must be previously filled with data, as described
under PUTA. Attention should be paid to the length bytes for VARCHAR columns, or
the indicator field (@), to see if NULL values are to be set.

QPAC-Batch Reference Manual 12-11

Hints on Job Control and Execution

Under z/OS, QPAC, which processes the DB2 tables, is called and executed by the
TSO batch program IKJEFTO01.
The application corresponds to the official format for batch programs.

An example of the job control follows.

// EXEC PGM=IKJEFTO1
//SYSTSPRT DD SYSOUT=%*
//QPACLIST DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM (DB2)
RUN PROG (QPAC) PLAN (gpacplan)
END
//QPACIN DD *
PARM=XREF, LCT=66
IDB=TBN=table, SCOL=USER/NUMBER, ORDBY=USER (A)
OPF=PR

END

Fig. 234: DB2 job control (z/OS)

QPAC can also be called without the use of the TSO batch program IKJEFTO1.
In this case the plan and the system id have to be defined by PARM.

// EXEC PGM=QPAC
//QPACLIST DD SYSOUT=*
//QPACIN DD *
PARM=PLAN=gpacplan,DB2ID=db2id
IDB=TBN=. ..

Fig. 235: Calling DB2 without IKIEFTO1

12-12 QPAC-Batch Reference Manual

Enhanced SQL Command Functions

The following examples are related to enhanced capabilities when working with DB2
tables. This new command group is highly flexible and nearly corresponds to the
functionality of the IBM SPUFI functions.

Every command of this enhanced group is introduced by the key word EXECSQL and
terminated by a semicolon (;). The enclosed definition statements are - mostly
unchanged - transferred to DB2. Only the relationship to the DB2 table definitions
and any potential host variables - where allowed - are resolved in advance.

QPAC internally all these EXECSQL commands are based on Dynamic SQL.
Dynamic SQL itself implies certain restrictions which cannot be circumvented by
QPAC. These restrictions are only minimal and normally not lacked by developer's
requirements.

Communication between QPAC and DB2 in connection with EXECSQL commands is
handled by new reserved field symbol names. Among other things official identifiers
of the SQLCA structure have thereby been implemented such as e.g. SQLCODE,
SQLSTATE etc.

The contents of these SQLCA fields are available after every EXECSQL command
and afterwards overwritten by any following SQL command.

The additional new reserved field symbols are listed beneath.

After an EXECSQL command any results or column contents are in the individual
column fields of the corresponding DB table definition. In case of a so called
"expression" result this result is available in a reserved field symbol which is built
according to the type and format of the result. Such a field symbol always begins
with with the stem RESULTxn, followed by the format (B=binary, c=character,
v=varcharacter, P=packed) and the position as a number where the corresponding
column position is located within the command string.

e.g. EXECSQL SELECT COUNT(*), MAX (SALARY), MIN(SALARY)
FROM IDB2 ;

results in RESULTB1, because COUNT within the SELECT statement is at position 1
and the result is a binary value, RESULTP2 because MAX (SALARY) is at position 2
and the result is a packed number and RESULTP3 because MIN(SALARY) is at
position 3 and also a packed number.

Reserved Field Names (only valid for EXECSQL)

SQLCODE BL4 SQLCODE

SQLERRD1 BL4 error code

SQLERRD2 - 6 BL4 error code

SQLWARNO CL1 warning code

SQLWARN1 - 9 CL1 warning code

SQLWARNA CL1 warning code

SQLSTATE CL5 status code

RESULTBnN BL4 binary expression
RESULTBnR@ BL4 binary expression indicator
RESULTPn PL16 packed expression
RESULTCn CL256 character expression
RESULTVn# BL2 variable character expression length field
RESULTVn CL254 variable character expression

QPAC-Batch Reference Manual 12-13

The EXECSQL Single Instruction

After the key word EXECSQL the ultimate SQL command follows which is terminated
on its own by a semicolon (;).

Within the SQL command any potential table definitions are not specified with the
original table name but with the short identification of a preceding QPAC table
definition.

Every table, except from tables in sub selects, that are to be processed have to be
preliminary defined as a QPAC DB table definition. By this definition the column
names are allocated as fields which then can be filled when required. Thereby any
potential prefixes will be considered.

Column names within the command definition are not allowed to contain prefixes
because they are directly delivered to DB2. The same rules apply as already
described with the WHERE-1Id instruction.

>>—EXECSQL — sqgl-command —— definitions ; ><

/

Supported are all SQL commands which can be dynamically prepared. A list of all
supported SQL commands can be found in Appendix C of the SQL Reference
Manual.

The definitions must exactly correspond to the format of the official SQL commands
INSERT, UPDATE, DELETE, SELECT etc. except to the before mentioned table
definition.

The table definitions are only specified with the QPAC DBId (e.g. IDB2 or 12) which
then at the same time connects to the preceding DB table definition and is replaced
by QPAC at execution time by the original table name.

Host variables are marked with a preceding colon (:) according to SQL convention.
The host variable itself must be a defined field symbol at the time of program
execution. Otherwise, an error message 108 (undefined symbol) appears.

Details are presented in the following examples.

The EXECSQL SELECT command in the above show format corresponds to a so-
called single SELECT, i.e. only one single row will be made available. If more than
one row of the same condition is available the SQLCODE —811 is returned together
with the resulting row.

The EXECSQL instruction may also be used in the dynamic format. In this case the
ultimate SQL command SELECT, INSERT, DELETE or UPDATE are prepared in a
predefined area. The field name of this area is the appended to the EXECSQL
command with a hyphen.

>>—EXECSQL-DynamField ><

The dynamic format does not permit any host variables with colons (:) because they
cannot be resolved at execution time. Additionally, the semicolon (;) is not permitted.
It is part of the dynamic command itself.

12-14 QPAC-Batch Reference Manual

Single Instruction Examples

* DB table definition 1

IDB1=TBN=QPAC.QPACTAB1
1=COLUMN CHA,CL10
0S=COLUMN_ CHAQ,BL2
11=COLUMN_ FLOATS,FL4
0S=COLUMN_ FLOATS@, BL2
15=COLUMN_ FLOATL, FL8
0S=COLUMN FLOATL@, BL2
23=COLUMN_ DATE,CL10
0S=COLUMN_ DATE@, BL2
33=COLUMN_DEC, PL5
0S=COLUMN_ DEC@, BL2
38=COLUMN INT,BL4
0S=COLUMN INT@,BL2
42=COLUMN_SMALLINT, BL2
0S=COLUMN_ SMALLINT@,BL2
44=COLUMN_ TIME, CL8
0S=COLUMN TIME@,BL2
52=COLUMN TIMESTAMP,CL26
05=COLUMN TIMESTAMP@,BL2
78=COLUMN_VARCHAR#,BL2
80=COLUMN_ VARCHAR, CL254
0S=COLUMN VARCHARE, BL2

* DB table definition 2 prefixed

IDB2=TBN=DSN8710.EMP, PRFX=YES
1=I2EMPNO, CL6
7=I2FIRSTNME#, BL2
9=I2FIRSTNME,CL12

21=I2MIDINIT,CL1

22=I2LASTNAME#, BL2
24=I2LASTNAME, CL15
39=I2WORKDEPT, CL3
0S=I2WORKDEPT@, BL2
42=12PHONENO, CL4
0S=I2PHONENO@, BL2
46=T2HIREDATE, CL10
0S=I2HIREDATER, BL2
56=I2J0B,CL8
0S=I2J0B@Q,BL2
64=I2EDLEVEL, BL2
0S=I2EDLEVELQ, BL2
66=I2SEX,CL1
0S=I2SEX@,BL2
67=I2BIRTHDATE,CL10
0S=I2BIRTHDATEQR, BL2
77=I2SALARY, PL5
0S=I2SALARY@,BL2
82=I2BONUS, PL5
0S=I2BONUS@,BL2
87=I2COMM, PL5
0S=I2COMM@,BL2

Fig. 236: EXECSQL - Sample DB table definitions

QPAC-Batch Reference Manual 12-15

* DB table definition 3 prefixed

IDB3=TBN=DSN8710.EMPROJACT, PRFX=YES

1=I3EMPNO, CL6
7=I3PROJNO, CL6
13=I3ACTNO, BL2
15=I3EMPTIME, PL3
0S=I3EMPTIMER, BL2
18=I3EMSTDATE, CL10
0S=I3EMSTDATER, BL2
28=I3EMENDATE, CL10
0S=I3EMENDATER, BL2

*

* DB table definition 4

IDB4=TBN=SYSIBM.SYSDUMMY1l

1=IBMREQD, CL1

Fig. 237: EXECSQL - Sample DB table definitions (cont.)

Static Format:

* Example DELETE from DB2 table IDB1

EXECSQL DELETE FROM IDBl1 WHERE COLUMN CHA =

'CHARACT400"' ;
IF SQLCODE < 0 THEN e e e . IFEND
IF SQLCODE = 100 THEN not found IFEND
IF SQLERRD3 > 1 THEN more than 1 row IFEND

Fig. 238: EXECSQL - Example DELETE

* Example UPDATE of DB2 table IDB1

SET X1 = 2048
EXECSQL UPDATE Il

SET COLUMN_ INT = :X1 ,
COLUMN DATE = NULL
WHERE COLUMN CHA = 'CHARACTI100' ;
IF SQLCODE < 0 THEN e e e IFEND

Fig. 239: EXECSQL - Example UPDATE

12-16 QPAC-Batch Reference Manual

* Example INSERT into DB2 table IDB1

SET COLUMN_ CHA = 'CHARACTA402'
SET COLUMN DATE = '1990-12-30"
SET COLUMN DEC,CL5 = X'0000000000"
SET COLUMN DEC(E = -1

SET COLUMN_ INT = 4096

SET COLUMN_ SMALLINT = 2048

SET COLUMN TIME = '23.20.00"

SET COLUMN VARCHAR 'VARIABLE CHARAC402'
SET COLUMN VARCHAR# = 18

EXECSQL INSERT INTO IDB1
(COLUMN FLOATS,
COLUMN FLOATL,
COLUMN CHA,

COLUMN DATE,
COLUMN_ DEC,
COLUMN_INT,
COLUMN SMALLINT,
COLUMN TIME,
COLUMN VARCHAR,
COLUMN TIMESTAMP)
VALUES
(1234E0,
1234E6,
:COLUMN CHA,
:COLUMN DATE,
NULL,
:COLUMN INT,
:COLUMN SMALLINT,
:COLUMN_TIME,
:COLUMN_VARCHAR,
CURRENT TIMESTAMP) ;

IF SQLCODE < 0O THEN IFEND

Fig. 240: EXECSQL - Example INSERT

* Example 1 Single SELECT of DB2 table IDB1

EXECSQL SELECT * FROM Il
WHERE COLUMN CHA = 'CHARACT402' ;

IF SQLCODE NOT = 0 THEN any error IFEND

Fig. 241: EXECSQL - Example 1 Single SELECT static format

The first row that complies to the WHERE clause is filled into the column fields of
table IDB1.

The return code —811 signalizes that there are additional rows that satisfy this
condition.

QPAC-Batch Reference Manual 12-17

* Example 2 Single SELECT of DB2 table IDB1
EXECSQL SELECT COUNT(*) FROM IDB1l ;
IF SQLCODE NOT = 0 THEN any error IFEND

IF RESULTB1 > 0 THEN

IFEND

Fig. 242: EXECSQL - Example 2 Single SELECT static format

The number of rows in table TDB2 are filled into the reserved field RESULTB1 which
has the format 4 bytes binary and position number 1, because after the SELECT
command the function COUNT is at position 1.

* Example 3 Single SELECT of DB2 table IDBI1

EXECSQL SELECT SUM(COLUMN DEC),
MAX (COLUMN_DEC) |,
MIN(COLUMN DEC),

FROM IDB1 ;
IF SQLCODE NOT = 0 THEN any error IFEND
IF RESULTP1@ < O THEN null IFEND
IF RESULTP1 >0 THEN IFEND
IF RESULTP2@ < O THEN null IFEND
IF RESULTP2 >0 THEN IFEND
IF RESULTP3@ < O THEN null IFEND
IF RESULTP3 >0 THEN IFEND

Fig. 243: EXECSQL - Example 3 Single SELECT static format

The results of these functions are 16 bytes packed. SUM is at position 1, MAX at
position 2 and MIN at position 3. The field with the trailed alpha sign (@) signalizes a
potential NULL value.

* Example 4 Single SELECT of DB2 table IDB2

0S=KEY, CL6
SET KEY = '000030"

EXECSQL SELECT LASTNAME FROM IDB2

WHERE EMPNO = :KEY ;
IF SQLCODE = 100 THEN not found IFEND
IF SQLCODE NOT = 0 THEN any error IFEND

Fig. 244: EXECSQL - Example 4 Single SELECT static format

Field 12L.ASTNAME of table definition IDB?2 is filled.

12-18 QPAC-Batch Reference Manual

* Example 5 Single SELECT of DB2 tables IDB2 and IDB3

EXECSQL SELECT AA.EMPNO, SUM(EMPTIME)
FROM IDB2 AA ,

IDB3 BB
WHERE AA.EMPNO = '000040' AND
BB.EMPNO = '000040'

GROUP BY AA.EMPNO ;

IF SQLCODE NOT = 0 THEN any error IFEND

Fig. 245: EXECSQL - Example 5 Single SELECT static format

In the example above correlation names are used. Such names cannot be DB Ids
(e.g. I1DB1)!
Correlation names must be defined with all columns names if the corresponding DB

Id definition contains a correlation name.
The column names in the SELECT definition cannot contain the QPAC prefixes. In

the SELECT only potential DB Ids and host variables with colon (:) are resolved
before the string is handed over unchanged to DB2-SQL.

* Example 6 Single SELECT of DB2 table IDB3

EXECSQL SELECT CURRENT TIME, CURRENT DATE,
CURRENT TIMESTAMP
FROM IDB3 ;

IF SQLCODE NOT = 0 THEN any error IFEND
SET SAVETIME = RESULTC1

SET SAVEDATE = RESULTC2
SET SAVETIMESTAMP = RESULTC3

Fig. 246: EXECSQL - Example 6 Single SELECT static format

Results are in the reserved fields with format C (CHARACTER) and the position
numbers 1-3. These character fields are 256 bytes long. See under "reserved field
symbols" in this regard.

QPAC-Batch Reference Manual 12-19

Dynamic Format:

* Example DELETE from DB2 table IDB1

1W=DYNAMAREA, CL800

SET DYNAMAREA = 'DELETE FROM Il '/
'WHERE COLUMN CHA = '/
' 'CHARACT400"'" ; '

EXECSQL-DYNAMAREA

IF SQLCODE < 0O THEN IFEND

Fig. 247: EXECSQL - Example Dynamic format

The EXECSQL Cursor Instruction for SELECT Commands

Beside the EXECSQL instruction for single SQL commands there is also the version
where the EXECSQL command is associated with a cursor and thereby has the
possibility to process multiple rows sequentially.

For this the additional command FETCH is used that fills one row after the other into
the column fields. Regarding the SELECT definitions the same rules apply as
previously described for the EXECSQL single instruction.

>>—EXECSQL-Cn — SELECT — definitions ; ><

>>—FETCH-Cn ><

To the EXECSQL command an identification (Cn) is appended with a hyphen. This
can be C1 to c109. Itis a reference id comparable with a file identification which on
the one hand gives a hint that it is a single SELECT and on the other hand also must
be specified with any following corresponding FETCH-Cn command. It is also the
cursor name which is internally assigned.

Please note: The cursors c1-C9 are internally declared without "WITH HOLD" and
the cursors C10-C19 are internally declared with "WITH HOLD".

The EXECSQL instruction with cursor may also be used in a dynamic format. In this
case the area's field name is also attached to the Id with a hyphen. The complete
SELECT command is then placed into this area before calling the EXECSQL, also
having the previously mentioned restrictions for host variables with colons ().

>>—EXECSQL-Cn-DynamField ><

>>—FETCH-Cn ><

12-20 QPAC-Batch Reference Manual

Sample SELECT Cursor Instruction

Static Format:

* Example 1 SELECT Cursor from DB2 table IDB2

EXECSQL-C1 SELECT * FROM IDB2 ;
IF SQLCODE NOT = 0 THEN prep or open error IFEND

DO-FOREVER
FETCH-C1
IF SQLCODE = 100 THEN DOQUIT IFEND
IF SQLCODE NOT = 0 THEN any error IFEND

DOEND

Fig. 248: EXECSQL - Example 1 Static format with Cursor

* Example 2 SELECT Cursor from DB2 tables and Subselect

EXECSQL-C8 SELECT AA.EMPNO, AA.LASTNAME,
'No project activities'
FROM IDB2 AA
WHERE NOT EXISTS
(SELECT EMPNO FROM IDB3
WHERE AA.EMPNO = EMPNO)
UNION
SELECT AA.EMPNO, AA.LASTNAME, BB.PROJNO
FROM IDB2 AA , IDB3 BB
WHERE AA.EMPNO = BB.EMPNO ;

IF SQLCODE NOT = 0 THEN any error IFEND

FETCH-C8

Fig. 249: EXECSQL - Example 2 Static format with Cursor

In this example a sub select is shown. At the third position a text constant is defined.
This text resp. BB. PROJNO stands in the result field RESULTV3 after execution. This
field has the attribute v (VARCHAR) and has a length of 254 bytes. The effective
length is in the appropriate field RESULTV3#.

QPAC-Batch Reference Manual 12-21

Dynamic Format with cursor:

* Example SELECT from DB2 table IDB1

0S=ANYFIELD,CL6
0S=ANYVALUE,M'999.99"
1W=DYNAMAREA, CL800

SET ANYFIELD
SET ANYVALUE =

'000030"
55000

SET DYNAMAREA = 'SELECT * FROM IDB1

'"WHERE EMPNO < '/
' r'1vo) ANYFIELD ! '''/
' AND BONUS > ' ! ANYVALUE

EXECSQL-C5-DYNAMAREA

IF SQLCODE < 0 THEN IFEND
DO-FOREVER
FETCH-C5
IF SQLCODE = 100
IF SQLCODE NOT =

THEN DOQUIT

DOEND

'/

IFEND
0 THEN any error IFEND

Fig. 250: EXECSQL - Example Dynamic format with Cursor

The definition in the DYNAMAREA must not contain any host variables with colon (:).
But using the SET instruction character fields may be concatenated whose contents

is then taken at execution time.

The contents of DYNAMAREA is handed over unchanged to DB2-SQL after the DB Id

IDB1 has been resolved.

Additional Sample SQL Commands

) IN DSN8D71A.DSN8S71D;

EXECSQL GRANT BIND ON PLAN TESTQPAC

EXECSQL SET CURRENT SQLID = 'XYZ';

EXECSQL COMMIT;

EXECSQL ROLLBACK;

EXECSQL DROP TABLE OQPAC.QPACTAB3;

EXECSQL CREATE TABLE QPAC.QPACTAB3
(NRSPROO SMALLINT,
NRVSOO00 CHAR(6) ,
NRKNSO0O CHAR(5),
TSMUTO0O TIMESTAMP,
AZVRNHI DECIMAL (5,0)

TO PUBLIC;

Fig. 251: EXECSQL - Examples additional SQL commands

12-22 QPAC-Batch Reference Manual

The same definitions are also possible in dynamic format:

0S=DYNAMICAREA,CL80

SET DYNAMICAREA = 'GRANT BIND ON PLAN TESTQPAC TO PUBLIC'
EXECSQL-DYNAMICAREA

Fig. 2562: EXECSQL - Examples SQL commands in dynamic format

Auto Commit

The reserved field symbol DB2COMMIT is a counter field of 8 bytes. It can be used to
automatically trigger a COMMIT when a specific number of INSERTs and UPDATEs
through EXECSQL and PUTA-Un or PUTD-Un , PUT-0On basic commands has been
reached.

This number can be specified in the DB2CcOMMIT field. When this value has been
reached and a COMMIT has been done the counting begins again.

SET DB2COMMIT = 10

SET DB2COMMIT = 0

Fig. 253: DB2 auto commit

If the DB2COMMIT field is set to 0 (zero) the auto commit function is deactivated.
Default is 0.

QPAC-Batch Reference Manual 12-23

Chapter 13. DL/l Support Feature

DL/l Data Base Definition

IBM DL/l is fully supported by this feature. It assumes, that DL/I is installed, and that
certain DL/I basic routines are available in the system.

Grundformat der DL/l DB Definition

>> IDB[n]=
-{;UDB[H}—
ODB[n]=

>

DBN=XXXXXX >
} E PCBn Q

><

L-,MSL=nn,RTN=xxx,KL=nn,KFN=xxx.J L,options-—|

DBN=
PCBn

MSL=

RTN=
KEN=

KL=

options

CLR=
CLE=

data base name.

It is assumed that the PCBn accompanying PSB contains a DB
definition under this name.

Instead of the data base name a PCB number within the PSB
may be defined.

maximum segment length.

If this definition is missing, the segment length for the 1/O buffer
will be taken from the internal DL/l blocks, where possible. This
definition is required when the internal DL/l blocks are not
available.

This is the case when DL/l is located in another address area
(QPACBMP, DBCTL under z/OS).

root segment name
name of the key field in the root segment

key length of the root segment

This parameters are always required when DL/l data base
management is located in another address area to that of QPAC
program itself, and if the command SETGK/SETEK is to be used
at the same time. QPACBMP or DBCTL always require this
definition.

In other cases, this information for QPACDLI is automatically
taken from the internal blocks.

additional options according to the following descriptions:

additional options
as described in Chapter 2: Input/Output Definitions

CLR= refers to an output area
CLE= refers to an input area

The rules for clearing areas as specified for other file

organizations, also apply to DL/I. If no option is specified, the
output area is cleared to X'00' and the input area to X'FF'.

QPAC-Batch Reference Manual 13-1

FCA=

SSEG=

File communication area

This definition determines the address within the general QPAC
working storage area which will be used as the communication
area for the files. The default form of FCA definition is dynamic.

selected segments

If not all segments within the DBD should be made available,
those required can be defined by this option, segment names
being separated by a'/" .

SSEG=NAMEA/NAMEB/NAMEX

Fig. 254: Specification of multiple segment names

To continue onto a following QPAC statement, when defining
several segment names, the first statement must end with '/' and
the next one start with the segment name.

SSEG=NAMEA/NAMEB/
NAMEX

WP=nnnnn

NOGE

NOITI

RC=YES

STAT

13-2 QPAC-Batch Reference Manual

Fig. 255: Segment names specification on the following statement
SSEG= is only allowed for input or update (IDB=, UDB=).

Work area position

The segment should be written into, or read from, the defined
general work area. The parameter defines the position within the
work area reserved for the segment. When wp= is defined, there
is no dynamic record area for the corresponding file definition.

Suppresses the return code GE, which can occur when using
SETGK or SETEK. (Refer to "Hints on Processing Logic").

It should also be noted that, in such a situation, instead of the
return code, the next segment (root segment) will be passed
over. At the same time the internal switch changes from 'record
orientated' to 'DB orientated'.

Suppresses the return code Il which can occur with a PUTA
instruction when a segment with the same key already exists. IF
NOTIT is specified and a segment cannot be inserted, processing
halts. If NOTIT is not specified and the segment already exists,
the return code Il is present in the FCA following the PUTA.

return code

The DL/l return code is returned in the FCA field . . RC without
QPAC being terminated in case of an error. This return code
contains blank if no DL/l return code has appeared.

data base statistics
At end of processing (close time) data base statistics should be
displayed.

General Application Overview

Processing by QPAC with
DBs as described by PSB
turn.

All common DB organizati
that contradict official DB
fit in with the defined PSB

The FCA is used for the e
return codes. These have
situation. The FCA is also
functions.

the GET instruction is sequential and is based on logical
definitions. Segment after segment is made available in its

ons are supported. QPAC does not contain components
and PSB definitions. QPAC organizes itself specifically to

xchange of information between DL/l and QPAC, mainly for
a logical meaning not necessarily connected to an error
used for key values when using the SETGK or SETEK

The FCA for DL/I is structured as follows:

return code
..RC

Bytes 2 8 2 4 n
Offset |0 2 10 12 20
key value
. .KEY

segment length
. .SEGLENG

segment level
..LEV

segment name
. .SEGNM

(RC)

Fig. 256: FCA for DL/I

return code (RC)

return code (RC)
The follwoing return codes are returned by QPAC, if
RC=YES was not specified:

for input/update:

bb = normal situation without any conditions
GA = crossed hierarchical boundary
GE segment not found

GK different segment type at same level

Il = segment can not be inserted by pUTA
for output:

bb = normal situation without any conditions

Return codes which do not begin with G or a blank, always
result in a processing halt: the exception is Il.

The return code GB (end of a data base) results in an EOF

situation and is only returned if RC=YES has been
specified.

QPAC-Batch Reference Manual 13-3

segment name

segment level

segment length

key value

filler (IDB & UDB)

After each GET the segment name is available in the FCA.
For output, the name of the segment to be written must be
placed in the FCA before the pPUT instruction.

segment level
2 bytes numeric EBCDIC.

in binary form,

1 fullword, after a GET command.

It is only made available if the internal DL/I blocks are
accessible, i.e. if the DL/ management is located in the
same address area.

used to start set generic key (SETGK) or set equal key
(SETEK). See SETGK/SETEK description.

The unused right-hand part of the segment area available,
(for a maximum segment length of 4096 bytes), is filled
with X'FF'. If a different filler is required, it can be explicitly
defined using the CLE= option in the file definition.

IDB=DBN=EDB888,CLE=X"'40"

Fig. 257: Option for special filler

The DL/I support feature uses the official processing routines of the DL/l system,
which must be present under their official names in the DL/I or system libraries.

The PARM parameter of the EXEC statement cannot be used when working with
DL/l z/OS. The QPAC DL/l support feature therefore has a QPAC pPARM statement:

This PARM statement has a fixed format, i.e. it must contain PARM= in positions 1-5
and must be the first statement to be read in:

OPF=PR

END

// EXEC
//DD1 DD
//DD2 DD

//QPACIN DD *
PARM=LIST,NOLOG, LINECNT=66
IDB=DBN=DBTEST,MSL=150

PGM= (QPACDLTI or

QPACBMP)

Fig. 258: DL/I example for z/0S

The PARM options are equivalent to those described in Chapter 1: Introduction under

PARM option.

13-4 QPAC-Batch Reference Manual

The call to QPAC from the job control corresponds to DL/l conventions. There is
therefore no difference between a PSB generated for PL/I and one for COBOL /
ASSEMBLER.

In each case, for z/OS systems, one of the following interfaces must be called as the
main program:

QPACDLI for pure batch processing
QPACBMP for DL/l online data bases in a separate address space (e.g.
DBCTL)

(PSBTEST is generated for COBOL programs)

//EXEC PGM=DFSRRC00, PARM='DLI,QPACDLI, PSBTEST, 15"
//EXEC PGM=DFSRRC00, PARM='DLI,QPACBMP, PSBTEST, .."

Fig. 259: DL/I call

A defined PSB can contain several PCB's. The required DB is selected according to
the DBN= parameter in the DB file definition, and only this one is accessed by QPAC.

Instead of the DBN (data base name) definition, which provides the search basis for a
PCB within a PSB, the PCB can also be defined by its place number. Thereby, PCB1
is the first, PCB4 the fourth PCB in the PSB.

Simple HISAM DBs can only be used with SETGK, if the NOGE option is defined. This
definition excludes that of a parentage.

The segment length can only be returned in the FCA when QPACDLI is used, i.e.

with pure batch processing. This information is not available when online data bases
are accessed.

QPAC-Batch Reference Manual 13-5

Hints on Processing Logic

Basically, a DB can be read (1DB), modified (UDB) or created (ODB).
Additions to, or deletions from an existing DB are supported in update mode (UDB).

Processing is by segments in their hierarchical order, top to bottom, left to right. Only
sensitive segments are made available. The user must himself identify which
segment is available at any given time. A segment-type change on the same level, or
the crossing of a hierarchical boundary, is indicated by the return code. The
appropriate segment name is available in the FCA.

If only GETs are used, processing is from beginning to end of the DB. This is
equivalent to the GN (go next) function. If UDB is defined instead of 1DB, the QPAC
GET is equivalent to the function GHN, and a following PUT equivalent to REPL. A
PUTA command corresponds to ISRT, and PUTD to the DLET.

The SETGK Instruction

The SETGK operation provides a further possibility. SET GENERIC KEY allows
processing to start at a given ROOT SEGMENT.

SETGK itself does not make the root segment available, this is done by the following
GET command.

Before issuing a SETGK command, the key value must be stored in the FCA. The key
length is automatically given to QPAC through the DBD. The following GET
corresponds to the function GHU and makes available the root segment with equal
or next higher key value. If no such segment is found before end of DB, a return
code of GE (no segment found) is given.

GETs following the first GET correspond to the function GNP (GHNP) until the end of
the DB record is reached, when the return code GE (no segment found) is given.

SET WP0OS9020,CL8 = 'KEY'
SETGK-I1 GET-I1
DO-UNTIL I1RC = 'GE'

GET-I1

Fig. 260: Sample SETGK for DL/I access

It is important to note, that by using a SETGK operation, processing is based DB
record mode, i.e. on reaching DB record end, the GE is returned and no segment is
made available. An update at this time, through a PUT (REPL) would be erroneous
(return code DJ). If SETGK operations are not used, processing is in DB mode.

13-6 QPAC-Batch Reference Manual

DB record mode: SETGK sets processing to a given root segment. The following
GET commands correspond to the DL/l function GNP (get next within parent). The
end of the DB record (before the following root segment) is indicated by the return
code GE. A following GET command makes the following root segment available and
automatically switches to DB mode processing, or possibly to EOF status (GB if
RC=YES is defined) if the preceding DB record was the last one in the DB.

DB mode: With each GET command, the next sensitive segment is made available,
until DB end. The GET command corresponds to the DL/I function GN (get next). The
change from the end of a DB record to the next root segment is indicated by a return
code of GA, as it is in the case of every boundary change to a higher level within
dependent segments.

e.g. QPAC DL/I FCA availability
operation function return code
a) SETGK (no segment)
GET GU root segment
GET GNP dependent segment
GET GNP dependent segment
GET GNP GE (no segment)
SETGK (no segment)
GET GU root segment
b) SETGK (no segment)
GET GU root segment
GET GNP dependent segment
GET GNP dependent segment
GET GNP GE (no segment)
GET GN root segment
GET GN dependent segment
GET GN dependent segment
GN GN GA root segment
GET GN dependent segment
c) SETGK (no segment)
GET GHU root segment
PUT REPL
GET GHNP dependent segment
PUT REPL
GET GHNP dependent segment
GET GHNP GE (no segment)
PUT REPL DJ error
d) .
GET GN segment
GET GN segment
GET GN GB end of data base if
RC=YES has been
defined

QPAC-Batch Reference Manual 13-7

The SETEK Instruction
The SETEK operation provides a further possibility.

Set Equal Key allows processing to start at a given ROOT SEGMENT with the same
key.

SETEK itself does not make the root segment available, this is done by the following
GET command.

Before issuing a SETEK command, the key value must be stored in the FCA. The key
length is automatically given to QPAC through the DBD. The following GET
corresponds to the function GU (GHU) and makes available the root segment with
the same key value. If no such segment is found, a return code of GE (no segment
found) is given.

GETs following the first GET correspond to the function GNP (GHNP), until the end of
the DB record is reached, when a return code of GE (no segment found) is given.

SET WP0OS9020,CL8 = 'KEY'
SETEK-I1 GET-I1

DO-UNTIL WPOS9000,CL2 = 'GE'
GET-I1

Fig. 261: Sample SETEK for DL/I access

It should be noted that when using the SETEK operation, processing is in DB record
mode, i.e. when an end of DB record is reached, a return code of GE is set, and no
segment is made available. Thereby, in update mode, a following PUT (REPL)
command would be in error, (return code DJ).

SETEK is otherwise no different to SETGK, and thereby what applies to DB mode
processing under SETGK applies here too.

The PUTA Instruction

Segments can be inserted into a DB by the PUTA command (put add). The segment
name must be placed in the FCA and the segment itself in the record area.

The return codes bb and Il are both possible; the latter only if NOTT is not defined as
an option.

PUTA is only possible in update mode (UDB=), and only if the PSB allows 'inserts'.

13-8 QPAC-Batch Reference Manual

The PUTD Instruction

Segments can be deleted from the DB by the PUTD command (put delete). The
segment to be deleted must first be read by a GET command, i.e. PUTD deletes the
segment last read.

PUTD is only possible in update mode (UDB=), and only if the PSB allows 'deletes'.

The ODB= Definition (Initial Load)
A database can also be created. Therefore a PSB with PROCOPT LS or L must be

used. Before execution the segment name must be inserted into the FCA field
. .SEGNM (segment name). The segment record is contained in the 1/O area.

QPAC-Batch Reference Manual 13-9

DL/lI Database Related Commands with SSAs.

A separate category of DL/I commands is available. But these commands use SSA
fields, and their contents has to be defined additionally.

Up to 8 SSA fields (each has a max. length of 256 bytes) are available. The names
are ..SSAl to ..SsA8. They must be used in number sequence. The number of
SSA fields in use is specified in the . . SSAN field (SSA numbers).

The contents of the SSA fields must adhere to the official DL/l format. QPAC expects
the format to be correct.

This command category is valid for IDB and UDB, NOT for ODB.

GU -I[n] -Uln] Get unique

GHU -I[n] -Uln] Get hold unique

GN -I[n] -Uln] Get next

GHN -I[n] -Uln] Get hold next

GNP -I[n] -Uln] Get next within parent
GHNP -I[n] -Ul[ln] Get hold next within parent
REPL -I[n] -Uln] Replace

DLET -I[n] -Ul[ln] Delete

ISRT -I[n] -Uln] Insert

Fig. 262: DL/I commands with SSAs

SET I1SSAl

'ROOTSEG *—- (ROOTKEY = 100)"'

SET I1SSAN = 1

GU-I1

IF I1RC = X'4040' THEN all ok IFEND
IF I1RC = 'GE' THEN not found IFEND

Fig. 263: Example of usage

The official DL/l return code is available in the FCA field . .RC (return code) after
execution.

With this command category the option RC=YES is the default and the execution is
therefore not terminated in case of any error.

13-10 QPAC-Batch Reference Manual

Chapter 14. MQSeries Support Feature

MQSeries Single Message Queue Definition

IBM MQSeries for z/OS is fully supported by this feature. It is based on the
assumption that MQSeries is installed, and the necessary authorization is given.

Basic Format of the MQSeries Message Queue Definition

>>- MQS[n]= |_

MNM:managername—Jt:,QNM:messagequeuename—
» DLO

,MBL=32760

><

L,MBL=nnn JI—,options—

MNM=

ONM=

DLQ

MBL=

options

Is the active queue manager name of the MQSeries system.
The manager name can also be dynamically filled into the
reserved field QnMGRNAME before the CONNECT command is
executed.

Is the message queue name of the queue that will be sent or
read. This queue name can also be dynamically filled into the
reserved field QnQNAME before the OPEN command is executed.

Dead Letter Queue

This definition, instead of providing a message queue name
(onM=) specifies that this file definition has to be provided for
reading the Dead Letter Queue.

QPAC then automatically determines and dynamically assigns
the name of the Dead Letter Queue after the CONNECT process.
With the GET commands the Dead Letter Header (DLH) is put by
QPAC into the separate Dead Letter Area (OnDLH ARERZ) and is
then available to the user. The message is available in the buffer
area.

With this key word the maximum buffer length is defined which is
provided for the message queue. The specification can be done
in bytes or in megabytes.

Megabytes are specified in sizes of 1M 2M 3M 4M. 100M is the
largest value allowed within z/OS.

If this definition is missing a default buffer length of 32760 bytes
is assumed. This value cannot be dynamically assigned or
increased but if necessary, it can be decreased by using the key
word QnBUFFLENG.

The following options may be used additionally:

QPAC-Batch Reference Manual 14-1

RC=YES

FCA=

CLR=X"'00"
CLR=NO

WP=nnnnn

14-2 QPAC-Batch Reference Manual

The completion code and the reason code are returned in the
FCA and there will be no abend in case of an error. The
assigned reserved field symbols are named QnCOMPCODE and
QnREASON.

In case of an error the current command is filled into the FCA
field QnCMDTEXT and the reason code clear text into the FCA
field QnREASONTEXT.

File Communication Area

This definition specifies the address within the QPAC working
storage of the file communication area for the corresponding
MQSeries file definition. Normally the FCA is not explicitly bound
to an address of the working storage. If not explicitly specified it
is dynamically allocated and the assigned field symbols are
used.

The structure of the FCA is shown graphically on one of the
following pages.

This option specifies the clearing value with which the message
queue area should be cleared after a PUT command. If this
definition is missing, X' 00" is assumed, i.e. the queue area will
be cleared with Low Value. By specifying CLR=NO the clearing
can be prevented.

Working Storage Position

This definition specifies that the MQSeries message queue area
is allocated within common working storage. The working storage
area must have an adequate size which is specified using the
PARM parameter PARM=WORK=nnnnn. |f WP= is specified an
additional dynamically allocated queue area will not exist.

Processing of MQSeries Message Queues

Message queues are processed by QPAC using the commands CONNECT, OPEN,
PUT resp. PUT1, GET, COMMIT, CLOSE, DISCONNECT and in special cases INQUIRE
and SET.

Within a QPAC program multiple message queues may be defined simultaneously.
The sum of all maximum addressable buffer lengths must not exceed 16 MB, i.e. for
example 4 message queues each with a maximum buffer length of 4 MB (MBL=4M)
could be defined.

Together with the message queue definitions all other file and database
organizations such as VSAM, SAM, DB2 etc. may be defined in any combination.
The declaration is always done following the same rule: The file ident key word is
appended by a number from 1-99.

IPFl=... IDB2=... MQS3=. .. OPF4=...

Fig. 264: Explicit file definitions

This number is part of the reference when used in input/output commands or implicit
position symbols.

For example the position symbol Q3P0S1 specifies the first position of the message
queue area of the file declaration MQs3=. The same applies to the command
CONNECT-Q3.

Before any message can be processed, read or sent, the connection to the message
queue manager must be established using the CONNECT command. The CONNECT
command must be executed for every single MQOSn definition. QPAC internally
verifies whether a connection to the same queue manager already exists and
internally establishes its connection. The same applies to the DISCONNECT
command.

Access to a message must be established using an OPEN command. According to
the desired processing the "open option" must be set. The open option is stored into
the predefined field QnOPENOPT. Therefore, QPAC provides for the official symbols
(as shown in the CMQA Macro/Book) which can be used as sending fields instead of
the direct numbers.

For example the option OUTPUT can be set as follows to send messages:

SET Q30PENOPT = MQOO OUTPUT

Fig. 265: Output option

If RC=YES is defined with a file definition the completion code must be examined.
Here also the official symbols may be used according to CMQA macro.

QPAC-Batch Reference Manual 14-3

IF Q3COMPCODE MQCC_OK THEN
IF Q3COMPCODE = MQCC_ FAILED THEN

Fig. 266: Examples of the completion code examination

MQSeries Commands

><

>> ——CONNECT-Qn
|— CONN-Qn 4

Before the CONNECT command, a queue manager name may be inserted into the
field QnMGRNAME if not already defined in the file definition.

SET QIMGRNAME = 'MANAGER'
CONNECT-Q1
IF Q1COMPCODE NOT = 0 THEN oops an error IFEND

Fig. 267: Example MQSeries CONNECT command

>>- OPEN-Qn ><

Before the OPEN command the open option must be inserted into the field
QnOPENOPT. See the open option list under 'Values Related to MQOPEN Open
Options'. Additionally, a message queue name may be specified with the field
QnQNAME if not already defined in the file definition.

SET QlOPENOPT = MQOO INPUT SHARED
OPEN-Q1
IF Q1COMPCODE NOT = 0 THEN oops an error

or

SET Ql1QNAME 'MESSAGE QUEUE NAME'

SET Q1OPENOPT = MQOO_ OUTPUT

OPEN-Q1

IF Q1COMPCODE NOT = 0 THEN oops an error IFEND

Fig. 268: Examples MQSeries OPEN command

14-4 QPAC-Batch Reference Manual

>>- GET-Qn ><

Before the GET command the options listed in the "Get Message Options" may be
inserted into the field QnGMO OPTIONS if necessary. Additional fields with can be
looked up in the MQGET OPTIONS area.

See therefore the equates under 'Values Related to MQGMO'.

After a GET command the message is put into the input/output area like the record of
any conventional data set. The FCA field QnDATALENG contains the current
message length. This can be smaller than the buffer length, i.e. the maximum
input/output area. If the FCA field completion code QnCOMPCODE does not contain 0
an error has occurred, and its reason is available in the FCA field reason code
QnREASON. Additionally a short clear text to the reason code is available in the FCA
field QnREASONTEXT.

A GET command is only allowed if the processing has been opened with an input
open option, e.g. MOOO BROWSE or MQOO INPUT AS Q DEF.

GET-Qn AT-EMPTY ... 1f message queue 1is empty ... ATEND

Fig. 269: Example MQSeries GET command

AT-EMPTY has the same meaning as AT-EOF with the only difference that no
automatic CLOSE is done. AT-EMPTY is only available with MOSn= file definitions and
may be specified if RC=YES has not been defined.

>>- PUT-Qn ><

Before the PUT command the message must be stored into the output area.

The current length should be stored into the FCA field QnDATALENG. If missing the
maximum buffer length is assumed (MBL=).

Have a look at the PUT options if necessary and consult the equates under 'Values
Related to MQPMO'.

The PUT command is only allowed if processing has been opened with the open
option MQOO OUTPUT.

SET Q1POS1,CL100 'MESSAGE DATA'

SET Q1DATALENG = 100

PUT-Q1

IF Q1COMPCODE NOT = 0 THEN oops an error IFEND

Fig. 270: Example MQSeries PUT command

QPAC-Batch Reference Manual 14-5

The completion code QnCOMPCODE has to be examined if RC=YES has been
specified. If RC=YES is missing QPAC will terminate execution in case of any error.

>>- COMMIT-Qn ><

If desired the COMMIT command may be specified after a PUT command. It's
meaning is self explaining.

>>- INQY-Qn ><

The INQUIRE command allows the collection of additional information.

Before the command the SELECTOR values must be set. A maximum of 16 selector
fields are available. They are predefined and are called QnSELECTOR1 , BL4 to
QnSLECTOR16,BL4. The symbol QnSLECTORS, CL64 spans over all individual fields.
There is an additional field QnSELCNT ,BL4 into which the number of used selector
fields must be filled. There are two groups, character attribute selectors and integer
attribute selectors.

The result of the character attribute selectors is available in the predefined field
QnCHARATTAREA,CL256 and the result of the integer attribute selectors in the field
QnINTATTARRAY,CL64. QnINTATTARRAY are 16 fields in sequence of the format
BL4. Each of those 16 integer attribute fields has its own name too: QnINTATT1 to
QnINTATT16.

Both areas also have a length and a counter field which are predefined. Their names
are QnCHARATTLENG,BL4 and QnINTATTCNT, BL4. In these fields the length of the
used character attribute area resp. the number of used integer attribute fields must
be set.

SET Q1SELCNT =1

SET Q1SELECTOR1 MQCA CREATION DATE
SET QIINTATTCNT 0

SET QI1CHARATTLENG = 12

INQY-0Q1

IF Q1COMPCODE NOT

0 THEN oops an error IFEND

Fig. 271: Example MQSeries INQY command

>>- SET-Qn ><

With the SET command new attributes can be set.
The SET command is principally the opposite of the INQY (INQUIRE) command.

Before the SET command - as opposed to the INQuire command - the selector fields,

the character values to be stored and/or the integer attributes have to be set.
The same fields are to be used as documented under the TNQY command.

14-6 QPAC-Batch Reference Manual

>>- BACK-Qn ><

With this command a rollback can be done. All GET-Qn and PUT-Qn operations are
backed out. This command is only effective BEFORE a CLOSE-Qn.

>>- CLOSE-Qn ><

Before the CL.LOSE command the close option has to be set in the field QnCLOSEOPT.
See therefore the close option list under 'Values Related to MQCLOSE close
options'.

SET QI1CLOSEOPT = MQCO NONE
CLOSE-Q1

Fig. 272: Example MQSeries CLOSE command

>> —— DISCONNECT-Qn ><
—[DISC—Qng

Before the DISCONNECT command normally no additional options must be defined.
The DISCONNECT command definitely terminates the connection to the queue
manager.

>> — QCLR-Qn ><

With this command the contents of the referenced queue can be deleted. The
command internally works with the MQSeries utility CSQUTIL. The JCL statements
/ISYSIN DD .. and //SYSPRINT DD .. will be internally allocated and should therefore
not be defined within the job step.

QPAC-Batch Reference Manual 14-7

In case of an error the FCA field QnREASON contains the reason code, the FCA field
QnCMDTEXT contains the command and the FCA field QnREASONTEXT contains the
corresponding reason code in clear text according to CMQA macro, for example
MQRC NOT OPEN FOR_OUTPUT.

The FCA for MQSeries has the following structure:

Displ. 0 4 12 20 30 100 124

Bytes 4 4 4 10 30 24 24

correlation id
QOnCORRELID,CL24

message id
QnMSGID,CL24

reason code text
QnREASONTEXT, CL37

current command in text form
QnCMDTEXT, CL10

data length
QnDATALENG, BL4

reason code
QnREASON, BL4

completion code
QnCOMPCODE, BL4

Fig. 273: FCA for MQSeries

Before a PUT command the current message length must be stored into the FCA
field QnDATALENG. If this length is missing or its value is binary 0 the maximum
buffer length is taken as the message length (MBL=nnn).

After a GET command the FCA field QnDATALENG contains the current message
length received in the queue area. If the defined maximum buffer length is to small a
buffer length error is returned.

14-8 QPAC-Batch Reference Manual

Areas

The following reserved field symbols are dedicated to the internal areas which are
assigned to the individual commands as parameters.

The symbol names correspond to the official ones as described in the macros/books
CMQODA, CMQMDA, CMQGMOA, CMQPMOA.

Object Descriptor Area

Symbol Offset Length Fmt Description
QnOD_AREA 0 168 C Area name
QnOD_VERSION 4 4 B Version number

QnOD OBJECTTYPE 8 4 B Object type
QnOD_OBJECTNAME 12 48 C Object name
QnOD_OBJECTQMGRNAME 60 48 C Object Q manager name
QnOD_DYNAMICQNAME 108 48 C Dynamic queue name
QnOD_ALTERNATEUSERID 156 12 C Alternate user identifier

Message Descriptor Area

Symbol Offset Length Fmt Description

OnMD AREA 0 324 C Area name

QnMD VERSION 4 B Version number

QnMD_ REPORT 4 B Report option

QnMD MSGTYPE 4 B Message type

QnMD EXPIRY 4 B Expiry time

OnMD_FEEDBACK 4 B Feedback or reason code

QnMD ENCODING 4 B Data encoding

QnMD CODECHARSETID 4 B Coded char set identifier

QnMD_ FORMAT 8 C Format name

QnMD PRIORITY 4 B Message priority

QnMD PERSISTENCE 44 4 B Message persistence

QnMD MSGID 48 24 C Message identifier

QnMD CORRELID 72 24 C Correlation identifier

QnMD BACKOUTCOUNT 96 4 B Backout counter

QnMD_REPLYTOQ 100 48 C Name of reply to queue

QnMD REPLYTOQMGR 148 48 C Name of reply to Q Mgr

QnMD_USERIDENTIFIER 196 12 C User identifier

QnMD_ ACCOUNTINGTOKEN 208 32 C Accounting token

OnMD_APPLIDENTITYDATA 240 32 C Appl data relating to ident

OnMD_PUTAPPLTYPE 272 4 B Appltype that put the msg

OnMD PUTAPPLNAME 276 28 C Applname that put msg

QnMD PUTDATE 304 8 C Date when msg was put

OnMD_PUTTIME 312 8 C Time when msg was put

OnMD APPLORIGINDATA 320 4 C Appldata relating to orig
Options that the MQGET Area

Symbol Offset Length Fmt Description

QnGMO AREA 0 72 C Area Name

OnGMO_VERSION 4 4 B Version number

QnGMO_OPTIONS 8 4 B Options that control the .

QnGMO_WAITINTERVAL 12 4 B Wait interval

OnGMO_SIGNALL 16 4 B Pointer to signal

QnGMO_SIGNAL2 20 4 B Signal identifier

OnGMO_RESOLVEDQNAME 24 48 C Resolved nm of dest que

QPAC-Batch Reference Manual 14-9

Options that the MQPUT Area

Symbol

QnGMO_AREA

QnPMO VERSION
QnPMO_OPTIONS
QnPMO_TIMEOUT

QnPMO CONTEXT
QnPMO_KNOWNDESTCOUNT
QnPMO_UNKNOWNDESTCOUNT
QnPMO INVALIDDESTCOUNT
QnPMO_ RESOLVEDQNAME
QnPMO_RESOLVEDQMGRNAME

Dead Letter Queue Header Area

Symbol

OnDLH AREA

QnDLH VERSION
QnDLH_REASON

OnDLH DESTQONAME
OnDLH_DESTQMGRNAME
QnDLH_ENCODING
QnDLH CODEDCHARSETID
QnDLH FORMAT

QnDLH PUTAPPLTYPE
QnDLH PUTAPPLNAME
QnDLH PUTDATE
QnDLH PUTTIME

RFH Header Area

Symbol

QnRFH_AREA
QnRFH_VERSION
OnRFH_STRUCLENGTH
QnRFH_ENCODING
QnRFH_CODEDCHARSETID
QnNRFH_FORMAT
QnRFH_FLAGS

CICS Bridge Area

Symbol

OnCIH_AREA

QnCIH VERSION
OQnCIH_STRUCLENGTH
QnCIH_ENCODING

QnCIH CODEDCHARSETID
QnCIH_FORMAT
OnCIH_FLAGS

QnCIH RETURNCODE
QnCIH_COMPCODE
QnCIH_REASON

OnCIH UOWCONTROL

OnCIH _GETWAITINTERVAL
OnCIH_LINKTYPE

OnCIH OUTPUTDATALENGTH
OnCIH FACILITYKEEPTIME
QnCIH_ADSDESCRIPTOR
OnCIH CONVERSATIONALTAS
QnCIH_TASKENDSTATUS
OnCIH_FACILITY

OnCIH FUNCTION
OQnCIH_ABENDCODE
OQnCIH_AUTHENTICATOR

14-10 QPAC-Batch Reference Manual

Offset

Offset

Offset

Offset

Length

~

CCORBDPEARARADIMIAN

Length

172
4

4
48
48

S NN
OO0 WOWWOOWWO

N
00 O

Length

AOADADN

Length

-
(o]
o

ORDOAPARARDRADIMDRMRADRADRADMDNOLALADDN

Fmt

OO0OWWWWWwWwWO

Fmt

Fmt

TOWTTDTO

Fmt

OO0 WWWWWWWWWWWIWOWWWmEO

Description

Area Name
Version number
Options that control the .

Object handle of input Q

Resolved nm of dest que
Resolved nm of dest gmgr

Description

Area Name

Version Number

Reason Message arrived
Original destination queue
Original destination g-mngr
Numeric of data that follows
Charset of data that follows
Format name

Type of application that put
Name of applicaation that p
Date when Msg was put
Time when Msg was put

Description

Area Name

Version Number

Total length of MQRFH incl.
Numeric of data that follows
Charset of data that follows
Format name

Flags

Description

Area Name

Version Number

Length of MQCIH struct
Reserved

Reserved

Format name of data that
Flags

Return code from bridge
Comcode or CICS EIBRESP
Reason or CICS EIBRESP2
unit-of-work control

Wait interval for MQGET
Link type

COMMAREA data length
Bridge facility release time
Send/receive ADS descript
wether task can be convers
Status at end of task

BVT token value

name of CICS EIBFN functi
Abend code

Password or passticket

OnCIH RESERVEDI
OnCIH REPLYTOFORMAT
OnCIH REMOTESYSID
OQnCIH_REMOTETRANSID
QnCIH_TRANSACTIONID
OnCIH FACILITYLIKE
QnCIH_ATTENTIONID
OQnCIH_STARTCODE
OnCIH CANCELCODE
OnCIH_NEXTTRANSACTIONID
OnCIH RESERVED2
OnCIH RESERVED3
QnCIH_CURSORPOSITION
QnCIH_ERROROFFSET
OnCIH INPUTITEM
OnCIH _RESERVED4

100
108
116
120
124

132
136
140
144
148
156
164
168

176

AR DMDPOOADMRADDADIMDIMDIMNOOO®
WDTTOOOOOOOOOOOO

QPAC-Batch Reference Manual 14-11

Reserved

format name of reply msg
Remote sysid to use
Remote transid to attach
Transaction to attach
Terminal emulated attributes
AID key

Transaction start code
Abend transaction code
Next transaction to attach
Reserved

Reserved

Cursor position

Offset of error in message
Item number of last msg
Reserved

EQUATES of the Different Options and Field Values

Official symbol names which are also used in QPAC are assigned to the different
values that must be filled into the area fields according to the application needs.
The most important ones are listed here. They correspond exactly to the
specifications which can be found in the MQSeries manuals of IBM or in the copy
books of the programming languages.

Their detailed meaning can be read in the MQSeries manuals of IBM.

Values Related to MQOPEN

Open Options

MQOO_INPUT AS Q DEF EQU 1
MQOO_INPUT_SHARED EQU 2
MQOO_INPUT EXCLUSIVE EQU 4
MQOO_BROWSE EQU 8
MQOO_OUTPUT EQU 16
MQOO_ INQUIRE EQU 32
MQOO_SET EQU 64
MQOO_SAVE_ALL_CONTEXT EQU 128
MQOO PASS INDENTITY CONTEXT EQU 256
MQOO_PASS ALL CONTEXT EQU 512
MQOO_SET IDENTITY CONTEXT EQU 1024
MQOO SET ALL CONTEXT EQU 2048
MQOO ALTERNATE USER AUTHORITY EQU 4096
MQOO_FAIL IF QUIESCING EQU 8192
Values Related to MQCLOSE

Close Options
MQCO NONE EQU 0
MQCO_DELETE EQU 1
MQCO_DELETE_PURGE EQU 2

Values Related to MQGMO

Structure Version
MQGMO_CURRENT_VERSION EQU 1

Get Message Options
MQGMO_WAIT EQU 1
MQGMO_NO_WAIT EQU 0
MQGMO_SYNCPOINT EQU 2
MQGMO_SYNCPOINT IF PERSISTENT EQU 4096
MQGMO_NO_SYNCPOINT EQU 4
MQGMO_MARK_SKIP_ BACKOUT EQU 128
MQGMO BROWSE_FIRST EQU 16
MQGMO_BROWSE_NEXT EQU 32
MQGMO_MSG_UNDER_CURSOR EQU 256
MQGMO_ BROWSE MSG_UNDER_CURSOR EQU 2048
MQGMO_ACCEPT_TRUNCATED_MSG EQU 64
MQGMO_SET_SIGNAL EQU 8
MQGMO FAIL IF QUIESCING EQU 8192
MQGMO_CONVERT EQU 16384
MQGMO_NONE EQU 0

Wait Interval
MQWI UNLIMITED EQU 1

Signal Values
MQEC_MSG_ARRIVED EQU 2
MQEC WAIT INTERVAL EXPIRED EQU 3
MQEC _WAIT CANCELED EQU 4
MQEC_Q MQR_QUIESCING EQU 5
MQEC CONNECTION QUIESCING EQU 6

14-12 QPAC-Batch Reference Manual

Values Related to MQPMO

Structure Version
MQPMO_CURRENT VERSION EQU 1
MQPMO CURRENT LENGTH EQU 128

Put Message Options

MQPMO SYNCPOINT EQU 2
MQPMO_NO_SYNCPOINT EQU 4
MQPMP_NO_CONTEXT EQU 16384
MQPMO DEFAULT CONTEXT EQU 32
MQPMO_PASS_ IDENTIY CONTEXT EQU 256
MQPMO PASS ALL CONTEXT EQU 512
MQPMO_SET IDENTITY CONTEXT EQU 1024
MQPMO_SET_ALL_CONTEXT EQU 2048
MQPMO ALTERNATE USER AUTHORITY EQU 4096
MQPMO FAIL IF QUIESCING EQU 8192
MQPMO_NONE EQU 0

Values Related to MQOD Object Descriptor

Structure Version
MQOD_CURRENT VERSION EQU 1
MQOD_CURRENT LENGTH EQU 168

Object Types

MQOT_Q EQU 1
MQOT NAMELIST EQU 2
MQOT PROCESS EQU 3
MQOT_Q MGR EQU 4
MQOT CHANNEL EQU 5
MQOT RESERVED 1 EQU 6
Extended Object Types
MQOT ALL EQU 1001
MQOT ALIAS Q EQU 1002
MQOT_MODEL_Q EQU 1003
MQOT LOCAL_Q EQU 1004
MQOT REMOTE_Q EQU 1005
MQOT SENDER_CHANNEL EQU 1007
MQOT SERVER_CHANNEL EQU 1008
MQOT REQUESTER_CHANNEL EQU 1009
MQOT RECEIVER CHANNEL EQU 1010
MQOT CURRENT CHANNEL EQU 1011
MQOT SAVED_CHANNEL EQU 1012

QPAC-Batch Reference Manual 14-13

Values related to MQMD Message Descriptor

Structure Version
MOMD CURRENT VERSION EQU 1

Report Options

MQRO_EXCEPTION EQU 16777216
MQRO_EXCEPTION WITH DATA EQU 50331548
MQRO EXCEPTION WITH FULL DATA EQU 117440512
MQRO_EXPIRATION EQU 2097152
MQRO_EXPIRATION WITH DATA EQU 6291456
MQRO EXPIRATION WITH FULL DATA EQU 14680064
MQRO_COA EQU 256
MQRO COA WITH DATA EQU 768
MQRO COA WITH FULL DATA EQU 1792
MQRO_COD EQU 2048
MQRO COD_WITH DATA EQU 6144
MQRO _COD _WITH FULL DATA EQU 14336
MQRO_PAN EQU 1
MQRO NAN EQU 2
MQRO NEW_MSG_ID EQU 0
MQRO_PASS MSG_ID EQU 128
MQRO_COPY MSG_ID TO CORREL_ID EQU 0
MQRO_PASS CORREL_ID EQU 64
MQRO_DEAD_LETTER_Q EQU 0
MQRO_DISCARD MSG EQU 134217728
MQRO NONE EQU 0

Message Types

MQMT SYSTEM FIRST EQU 1
MQOMT REQUEST EQU 1
MOMT REPLY EQU 2
MQMT DATAGRAM EQU 8
MQMT REPORT EQU 4
MQMT SYSTEM LAST EQU 65535
MQMT APPL FIRST EQU 65536
MQOMT APPL_LAST EQU 999999999
Expiry
MQEI_UNLIMITED EQU 1
Feedback Values
MQFB_NONE EQU 0
MQFB_SYSTEM FIRST EQU 1
MQFB_QUIT EQU 256
MQFB_EXPIRATION EQU 258
MQFB_COA EQU 259
MQFB_COD EQU 260
MQFB_PAN EQU 275
MQFB_NAN EQU 276
MQFB_CHANNEL COMPLETED EQU 262
MQFB_CHANNEL FAIL_ RETRY EQU 263
MQFB_CHANNEL FAIL EQU 264
MQFB_APPL CANNOT BE STARTED EQU 265
MQFB_TM_ERROR EQU 266
MQFB_APPL_TYPE ERROR EQU 267
MQFB_STOPPED BY MSG EXIT EQU 268
MQFB_XMIT_Q MSG_ERROR EQU 271
MQFB_DATA LENGTH ZERO EQU 291
MQFB DATA LENGTH NEGATIVE EQU 292
MQFB_DATA LENGHT_TOO_BIG EQU 293
MQFB_BUFFER_OVERFLOW EQU 294
MQFB LENGTH OFF_BY ONE EQU 295
MQFB_IIH ERROR EQU 296
MQFB_NOT AUTHORIZED FOR IMS EQU 298
MQFB_IMS ERROR EQU 300
MQFB_IMS_FIRST EQU 301
MQFB_IMS LAST EQU 399
MQFB CICS INTERNAL ERROR EQU 401
MQFB_CICS_NOT_AUTHORIZED EQU 402
MQFB CICS BRIDGE FAILURE EQU 403
MQFB_CICS CORREL ID ERROR EQU 404
MQFB_CICS_CCSID_ERROR EQU 405
MQFB CICS_ENCODING ERROR EQU 406
MQFB_CICS CIH ERROR EQU 407
MQFB_CICS_UOW_ERROR EQU 408

14-14 QPAC-Batch Reference Manual

MQFB CICS COMMAREA ERROR EQU 409

MQFB_CICS_APPL_NOT_STARTED EQU 410
MQFB CICS APPL ABENDED EQU 411
MQFB_CICS_DLQO ERROR EQU 412
MQFB_CICSD_UOW_BACKED OUT EQU 413
MQFB SYSTEM LAST EQU 65535
MQFB_APPL_FIRST EQU 65536
MQFB_APPL_LAST EQU 999999999
Encoding
MQENC_NATIVE EQU 785

Encoding for Binary Integers

MQENC_INTEGER_UNDEFINED EQU 0
MQENC INTEGER NORMAL EQU 1
MQENC_INTEGER_REVERSED EQU 2

Encoding for Packed-Decimal Integers

MQENC_DECIMAL_UNDEFINED EQU 0
MQENC_DECIMAL NORMAL EQU 16
MQENC_DECIMAL REVERSED EQU 32

Coded Character-Set Identifiers

MQCCSI DEFAULT EQU 0

MQCCSI_Q MGR EQU 0

MQCCSI_ EMBEDDED EQU -1
Priority

MQPRI_PRIORITY AS Q DEF EQU -1

Persistence Values

MQPER_PERSISTENT EQU 1
MQPER_NOT PERSISTENT EQU 0
MQPER PERSISTENCE_AS_Q DEF EQU 2
Message Flags
MOMF SEGMENTATION_ INHIBITED EQU 0
MQMF SEGMENTATION ALLOWED EQU 1
MQMF MSG_IN GROUP EQU 8
MQOMF _LAST_MSG_IN_GROUP EQU 16
MQMF SEGMENT EQU 2
MQMF LAST SEGMENT EQU 4
MQOMF _NONE EQU 0
Values Related to MQINQ Call
Character-Attribute Selectors
MQCA APPL_ID EQU 2001
MQCA BACKOUT_REQ Q NAME EQU 2019
MQCA BASE Q NAME EQU 2002
MQCA CHANNEL AUTO DEF EXIT EQU 2026
MQCA_COMMAND_INPUT_Q NAME EQU 2003
MQCA_CREATION DATE EQU 2004
MQCA CREATION TIME EQU 2005
MQCA DEAD LETTER_Q NAME EQU 2006
MQCA DEF XMIT Q NAME EQU 2025
MQCA ENV_DATA EQU 2007
MQCA_FIRST EQU 2001
MQCA INITIATION Q NAME EQU 2008
MQCA LAST EQU 4000
MQCA_LAST_USED EQU 2026
MQCA_NAMELIST DESC EQU 2009
MQCA NAMELIST NAME EQU 2010
MQCA_ NAMES EQU 2020
MQCA_ PROCESS_DESC EQU 2011
MQCA PROCESS NAME EQU 2012
MQCA_Q DESC EQU 2013
MQCA Q MGR_DESC EQU 2014
MQCA Q MGR_NAME EQU 2015
MQCA_Q NAME EQU 2016
MQCA_REMOTE_Q_MGR_NAME EQU 2017
MQCA REMOTE Q NAME EQU 2018
MQCA_STORAGE_CLASS EQU 2022

QPAC-Batch Reference Manual 14-15

MQCA_TRIGGER_DATA EQU 2023
MQCA_USER_DATA EQU 2021
MQCA XMIT Q NAME EQU 2024

Integer_Attribute Selectors

MQIA APPL TYPE EQU 1
MQIA AUTHORITY EVENT EQU 47
MQIA BACKOUT THRESHOLD EQU 22
MQIA CHANNEL AUTO DEF EQU 55
MQIA CHANNEL AUTO_ DEF EVENT EQU 56
MQIA CODED CHAR SET ID EQU 2
MQIA COMMAND LEVEL EQU 31
MQIA CPI_LEVEL EQU 27
MQIA CURRENT Q DEPTH EQU 3
MQIA DEF_ INPUT OPEN OPTION EQU 4
MQIA DEF_PERSISTENCE EQU 5
MQIA DEF PRIORITY EQU 6
MQIA DEFINITION TYPE EQU 7
MQIA DIST LISTS EQU 34
MQIA FIRST EQU 1
MQIA HARDEN GET BACKOUT EQU 8
MQIA_HIGH_Q_ DEPTH EQU 36
MQIA INDEX TYPE EQU 57
MQIA INHIBIT EVENT EQU 48
MQIA INHIBIT GET EQU 9
MQIA INHIBIT PUT EQU 10
MQIA LAST EQU 2000
MQIA LAST_ USED EQU 57
MQIA LOCAL EVENT EQU 49
MQIA MAX HANDLES EQU 11
MQIA MAX MSG_LENGTH EQU 13
MQIA MAX PRIORITY EQU 14
MQOIA MAX O DEPTH EQU 15
MQIA MAX_ UNCOMMITTED_MSGS EQU 33
MQIA MSG DELIVERY SEQUENCE EQU 16
MQIA MSG_DEQ COUNT EQU 38
MQIA MSG_ENQ COUNT EQU 37
MQIA NAME COUNT EQU 19
MQIA OPEN INPUT COUNT EQU 17
MQIA OPEN_OUTPUT_COUNT EQU 18
MQIA PERFORMANCE_ EVENT EQU 53
MQIA PLATFORM EQU 32
MQIA Q DEPTH HIGH EVENT EQU 43
MQIA Q DEPTH HIGH LIMIT EQU 40
MQIA Q DEPTH LOW EVENT EQU 44
MQIA Q DEPTH LOW_LIMIT EQU 41
MQIA Q DEPTH MAX EVENT EQU 42
MQIA Q SERVICE INTERVAL EQU 54
MQIA Q SERVICE_INTERVAL EVENT EQU 46
MQIA_Q TYPE EQU 20
MQIA REMOTE EVENT EQU 50
MQIA RETENTION_INTERVAL EQU 21
MQIA SCOPE EQU 45
MQIA SHAREABILTIY EQU 23
MQIA START_STOP_EVENT EQU 52
MQIA SYNCPOINT EQU 30
MQIA TIME SINCE RESET EQU 35
MQIA TRIGGER_CONTROL EQU 24
MQIA TRIGGER_DEPTH EQU 29
MQIA TRIGGER INTERVAL EQU 25
MQIA TRIGGER_MSG_PRIORITY EQU 26
MQIA TRIGGER_TYPE EQU 28
MQIA USAGE EQU 12

14-16 QPAC-Batch Reference Manual

Chapter 15. CICS External Interface Support Feature
(EXCI)

EXCI External Batch to CICS Communication Definition

Communication between Batch and CICS is no longer available due to the sunset of
QPAC for CICS (QPAC-Online) as of QPAC Release 9.10

QPAC-Batch Reference Manual 15-1

Chapter 16. ISPF/PDF Support Feature

ISPF/TSO Command Definition

IBM ISPF under TSO MVS is fully supported by this feature. It allows the
programming of complete ISPF applications instead of using for example CLIST.
This feature allows an ISPF application to use known file organizations supported by
CLIST and at the same time process PDS and SAM or VSAM, data bases like DB2
or SYSOUT data, and last but not least MQSeries. The complete command set of
QPAC-Batch is available.

Basic Format of the ISPF Command Definitions

>>—COMMAND- ><
L l

operands as field symbols or literals

All official ISPF commands that are listed below are supported. Therefore the
command constant, which is normally defined within the CALL ISPLINK command
under CLIST, is the QPAC command itself followed by a hyphen.

The operands correspond to the normal syntax as described in the IBM manual
"ISPF Services Guide" or "ISPF Reference Summary". Not supported are are
operands related to DBCS.

Following the commands are listed. The corresponding description of the operands
are to be consulted in the official IBM manual. Only an overview and some hints are
given here.
Command Operanden
Start Pop-Up Window Mode

ADDPOP- [field-name]
[, row] [, column]

(not yet supported) Browse Interface

BRIF- [
Browse a Data Set
BROWSE- Dsname
, [seriall, [pswd-valuel, [panel-name]
or
Data-id

, [member-name], [format-name]

QPAC-Batch Reference Manual 16-1

Set Processing Modes
CONTROL- 'DISPLAY'" [
, 'LOCK'
,'"LINE', line-number
,'"SM', line-number
, '"REFRESH'
, 'SAVE' or 'RESTORE'
, "ALLVALID'
]
'NONDISPL' [
, "ENTER' or 'END'
]
'ERRORS'" [
, 'CANCEL' or 'RETURN'
]
'SPLIT'
, "ENABLE"
, "DISABLE'
'NOCMD'
' SUBTASK'
, "PROTECT"
, 'CLEAR'
'TSOGUI" [
, "QUERY' or 'OFF' or 'ON'
]
, '"REFLIST'" [
, '"UPDATE', or 'NOUPDATE'
]

Display Panels and Messages

DISPLAY- [panel-name] |[,msg-id] [,cursor-field-name]
[, cursor-position] [,stack-buffer-name]
[, ret-buffer-name] |[,ret-length-name]
[

,message-field-name]

Initialize Edit Recovery
EDIREC- "INIT'
, command-name
'QUERY"'
'CANCEL'
'DEFER'

Edit a Data Set

EDIT- dsname, ,[seriall]
, [pswd-value] , [panel-name] , [macro-name]
, [profile-name]
,data-id
, [member-name] , [format-name]

, ["YES' or 'NO']

Specify Edit Recovery Handling

EDREC- '"INIT' [, command-name]
'QUERY"'
'"PROCESS' [, pswd-value] [,data-id]
'CANCEL'
'DEFER

Statistics for a file
FILESTAT- var—-name

, [var-name, var—-name]

16-2 QPAC-Batch Reference Manual

Upload or Download File

FILEXFER- host var,ws war, '"HOST' or 'WS',
[volume, 'BINARY' or 'TEXT',
'STATS' or 'NOSTATS',
'YES' or 'NO'
]

End File Tailoring
FTCLOSE- [member-name] [,library] [, 'NOREPL']

Erase File Tailoring Output
FTERASE- member-name [, library]

Include a Skeleton
FTINCL- skel-name [, "NOFT']

Begin File Tailoring
FTOPEN- ['"TEMP']

Get a Message

GETMSG- message-id

[, short-message-name]
[, long—-message—name]
[, alarm—-name]
[, help—-name]
[, type—-name]
[, window—name]
[, ccsid-name]

Allocate Application Libraries
LIBDEF- lib-type
[, '"DATASET' or 'EXCLDATA' or
"LIBRARY' or 'EXCLLIBR']
[,dataset-1ist or libname]
[, "COND' or 'UNCOND'] or 'STACK'

Write Lines to the List Data Set

LIST- dialog-variable-name, line-length
[, '"PAGE']
[, "SINGLE' or 'DOUBLE' or 'TRIPLE']
[,OVERSTRK"']
[,'CC"]

Activate a Promotion Hierarchy

LMACT- project, top-group
Close a Data Set
LMCLOSE- data-id

Compresses a Partitioned Data Set
LMCOMP- data-id

Copy Members of a Data Set
LMCOPY- from-data-id

, [from—-member-name]

, to-data-id

, [to-member-name]

, ['"REPLACE"']

, ["PACK' ,['TRUNC'] , ['"LOCK']

Data Set List Service
LMDDISP- dslist-id
, ['"VOLUME' or 'SPACE' or 'ATTRIB' or 'TOTAL']
, ['"YES' or 'NO']
, [panel—-name]

QPAC-Batch Reference Manual 16-3

Deactivate a Promotion Hierarchy
LMDEACT- project, top-group

Free a Data Set List ID
LMDFREE- list-id

Initialize a Data Set List
LMDINIT- dslist-id-var

, {dsname-1level}

, {volume-serial}

List Data Sets
LMDLIST- dslist-id
,"LIST' or 'FREE' or 'SAVE'
,dataset-var
, ['"YES' or 'NO'
» [group]

Erase a Data Set
LMERASE- {project group type}

, {dataset}

, ['"YES' or 'NO']

Free Data Set from its Association with Data ID
LMFREE- data-id

Read a Logical Record from a Data Set
LMGET- data-id

, '"MOVE' or 'LOCATE' or 'INVAR'

,dataloc-var

,datalen-var

,max—-length

Create a Table with the Hierarchy Structure
LMHIER- project,group,table-name

Generate a Data ID for a Data Set

LMINIT- data-id-var
, {project,groupl [,group2]
[, group3] [,group4] ,type}
, {dsname} , {ddname}
, lserial]l , [password]

, ["SHR' or 'EXCLU' or 'SHRW' or 'MOD']
, [org-var]

Add a Member to a Data Set
LMMADD- data-id, member-name
, ["YES' or 'NO'], ['"NOENQ']

Delete a Member from a Data Set
LMMDEL- data-id, member-name
, ['"NOENQ"']

16-4 QPAC-Batch Reference Manual

Member List Service

LMMDISP- data-id
, ['"DISPLAY"']

,[pattern]
["YES' or 'NO']
, [panel-name]
['"zCMD' or '"ZLLCMD' or 'ZLUDATA'
[top-row]
,l l,l]

['S'" or '"ANY']

, [1 or 9]
, ["ALLOWNEW'
data-id
,'GET' ,"' ', ['YES' or 'NO']

data-id
, 'PUT', member-name,"' '," '," ', " !
, [Icmd-valuel], [udata-value]

data-id
, '"ADD', member-name, "' '," ', ', " !
, [lcmd-value], [udata-value]

data-id
, '"FREE'

Find a Library Member

LMMFIND- data-id, member-name
, ["LOCK'

, [lrecl-var]

, [recfm-var]

[group-var]

["YES' or '

r
, NO'
List a Library's Members
LMMLIST- data-id
, ["LIST' or 'FREE' or 'SAVE']
[member-var]
, ['"YES' or 'NO'
» lgroup]
[member-pattern]

14

4

Move Members of a Data Set
LMMOVE- from-data-id
, [from-member—-name]
, to-data-id
, [to-member-name]
,[REPLACE']
, ["PACK"']
Pl
[

14

Rename a Data Set Member
LMMREN- data-id

, 0ld-member-name, new-member—-name
, ['"NOENQ"']

Replace a Member of a Data Set

LMMREP- data-id,member-name
, ["YES' or 'NO']
, ['"NOENQ']

QPAC-Batch Reference Manual 16-5

LMMSTATS-

LMOPEN-

LMPRINT-

LMPROM-

LMPUT-

LMQUERY-

LMRENAME -

LMREVIEW-

LOG-

PQUERY-

16-6 QPAC-Batch Reference Manual

Set and Store, or Delete ISPF Statistics

data-id,member-name

, [version-number], [mode-level], [create-date]
, [last-modified-date], [last-modified-time]

, l[current-size]

,[initial-size], [records—-modified], [user—-1id]

4-char-year-create-date]
4-char-year-last-modified-date]
ON or OFF or ASIS]

14

4

(
[
[
, ['DELETE']
[
[
[

4

Open a Data Set

data-id
, ["INPUT' or 'OUTPUT'
, llrecl-var], [recfm-var], [org-var]

Print a Partitioned or Sequential Data Set
data-id,member—-name

, ["INDEX"]

, ['"YES' or 'NO']

Promote a Data Set or Member to Another
{from-project, fromgroup, from-type, from—-member}
, {dsname}

, lseriall, [password]

, ['"MOVE"', [reason-code]

, ['"YES' or 'NO']

, [to-project], [to-group]l, [to-typel, [to-member]
Write a Logical Record to a Data Set

data-id

, "INVAR' or 'MOVE'

,dataloc-var,data-length

,'" ', ["NOBSCAN'

Give a Dialog Information about a Data Set

data-id

, [proj-var], [groupl-var], [groupZ2-var]

, lgroup3-var], [group4-var], [type-var]

, ldsn-var], [ddn-var], [serial-var], [eng-var]

, lopen-var], [lrecl-var], [recfm-var], [dsorg-var]
, lalias-var], [password-var]

Rename an ISPF Library
project, group, type
,{ [new-project], [new-group], [new-type] }

Create a Data Set Containing Controls Info
LIBRARY or MEMBER

,data-id, dataset

, [datamemb]

,project, topgroup, type

, [member]

Write a Message to the Log Data Set
message-id

Obtain Panel Information
panel-name, area-name
[,area-type—-name]
,area-width-name]
,area-depth-name]
, row—number—-name]
column-number—-name]

[
[
[
[

QLIBDEF-

REMPOP-

SELECT-

SETMSG-

TBADD-

TBBOTTOM-

TBCLOSE-

TBCREATE-

TBDELETE-

TBDISPL-

TBEND-

Query LIBDEF Definition Information
lib-type

[, type-var]

[,id-var]

Remove a Pop-Up Window
["ALL"']

Select a Panel or Function
length, keywords

Set Next Message
message-1id,

, "COND']

[, message-field-name]

Add a Row to a Table
table—-name

[, name-1ist]

[, "ORDER"']

[, number-of-rows]

Set the Row Pointer to Bottom
table—-name

[, var—-name]

[, rowid-name]

[, "NOREAD']

[, crp—name]

Close and Save a Table
table—-name

[, "NEWCOPY' or 'REPLCOPY']
[,alt-name]

[, percentage]

[,1ibrary]

Create a New Table
table—-name

[, key-name-1ist]

[, name-11ist]

[, " WRITE' or '"NOWRITE']
[, "REPLACE "]
[,1ibrary]
[, "SHARE']

Delete a Row from a Table
table—-name

Display Table Information
table—-name

[, panel-name]

[, message-id
[, field-name]
[, table-row—number]
[, cursor-position]

[, "YES' or 'NO']

[, crp—name]

[, rowid-name]

[, message-field-name]

Close a Table without Saving
table-name

QPAC-Batch Reference Manual 16-7

Erase a Table
TBERASE- table-name

[, library]

Determine whether a Row exists in a Table
TBEXIST- table—-name

Retrieve a Row from a Table
TBGET- table-name

[, var—-name]

[, rowid—-name]

[, "NOREAD']

[, crp—name]

Modify a Row in a Table
TBMOD- table-name

[, name-1ist]

[, "ORDER']

Open a Table
TBOPEN- table-name
[, "WRITE' or 'NOWRITE']
[, library]
[, 'SHARE']

Update a Row in a Table
TBPUT- table-name

[, name-1ist
[, "ORDER']

Obtain Table Information
TBQUERY - table-name
[, key—-name]
[, var—-name]
[, rownum—-name]
[, keynum—name]
[, namenum-name]
[, crp—name]

Define a Search Argument
TBSARG- table-name
[, name-1ist]
[, "NEXT' or '"PREVIOUS']
[, name-cond-pairs]

Save a Table
TBSAVE- table-name
[, "NEWCOPY' or 'REPLCOPY']
[,alt-name]
[, percentage]
[,1ibraryl

Search a Table
TBSCAN- table—-name
[, name-1ist]
[, var—-name]
[, rowid-name]
[, "NEXT' or 'PREVIOUS']
[, "NOREAD"']
[, crp—name]
[,condition-value-1ist]

16-8 QPAC-Batch Reference Manual

Move the Row Pointer
TBSKIP- table—-name

[, number]
[, var—-name]
[, rowid-name]
[, rowid]
[, "NOREAD']
[, crp—name]

Sort a Table
TBSORT- table-name, sort—-1ist

Retrieve Table Statistics

TBSTATS- table—-name
[,date-created-name] [, time-created-name]
[,date-updated-name] [, time-updated-name]
[, user—-name] [, row-created—-name]
[, rownum-name]
[, row-updated-name] [, table-update-name]
[, service-name] [, return—-code-name]
[, statusl-name] [, statusZ2-name]
[, status3-name]
[,1library] [,date-created-name-4-digit]
[,

date-updated-name-4-digit]

Set the Row Pointer to the Top
TBTOP- table-name

Clear Table Variables
TBVCLEAR- table—-name

Translate CCSID Data

TRANS- from-ccsid-number, to-ccsid-number
, from-variable-name
[, to-variable-name] |[,data-length]

Create a Copy of a Variable
VCOPY- name-1ist, length-array,value-array
[, " LOCATE' or 'MOVE']

Define Function Variables
VDEFINE- name-1list,variable, format, length
[,options-1ist] [, user-datal

Remove a Definition of Function Variables
VDELETE- name-1ist

Remove Variables from Shared or Profile Pool
VERASE- name-11ist

[, "ASIS' or 'SHARED' or 'PROFILE' or 'BOTH'

Retrieve Variables from a Pool or Profile
VGET- name-1ist
[, "ASIS' or 'SHARED' or 'PROFILE']

View a Data Set

VIEW- dsname
, [serial]
, [pswd-valuel], [panel-name], [macro-name]
, [profile-namel, [data-id], [member-name]
[format-name], ['YES' or 'NO'], ['YES' or 'NO']

4

QPAC-Batch Reference Manual 16-9

Mask and Edit Processing

VMASK- name-1ist
{, "FORMAT'{, 'IDTE"'}
{, "STDDATE"' }
{,"ITIME"'}
{,'STDTIME"}
{, "JDATE '}
{,"JSTD"'}

{,'"USER', "mask',masklen

Update Variables in the Shared or Profile Pool
VPUT- name-1ist
[, "ASIS' or 'SHARED' or 'PROFILE']

Replace a Variable
VREPLACE- name-1ist, lengths, values

Reset Function Variables
VRESET-

16-10 QPAC-Batch Reference Manual

Example of Syntax: QPAC Program Example QPACETBH

PARM=LIST, NOLOG, NOLOGTIT, NOCHECK, WORK=30000

IPF9=*QPETBHCO, VS, WP=WPOS5001 *. PRIMARY
IPF1=*QPETBHP1, VS, WP=WPOS5001 *. ALTERNATE INDEX Pl
01=D1NAME, CL30

=D1LNR, ZL5

=D1PIN,CL7

=D1ANREDE, CL8

=D1PSA,CL3

=D1TCODE, CL6

=DITELNR, CL5

=D1LNRTEL, ZL5

=D10E,CL4

=D1LNROE, ZL5

=D1PST,CL4

=D1ORT, CL4

=D1RAUM, CL5

=D1LNRRAUM, Z2L5

=D1KOS,CL6

=D1LNRKOS, ZL5

=D1FAXCODE, CL6

=D1FAXNR, CL5
IPF2=*QPETBHP2, VS, WP=WPOS5001 *. ALTERNATE INDEX P2
IPF3=*QPETBHP3, VS, WP=WPOS5001 *. ALTERNATE INDEX P3
IPF4=*QPETBHP4, VS, WP=WPOS5001 *. ALTERNATE INDEX P4

01W=NAMELIST,CL255
=S1NAME, CL30
=S1TELNR, CL5
=S10E,CL4
=S1RAUM, CL5
=S1K0S,CL6
=S1FAXNR, CL5

K e _
=ISPLEN, BL4

K e _
=QSCAN, CL4
=QSARG, CL255

K e _

* SET CONTROL

K e e e — — — —

CONTROL-"ERRORS ', '"RETURN '

K e _

* VDEFINES

K e _

VDEFINE-'S1NAME', SINAME

QPAC-Batch Reference Manual 16-11

VDEFINE-'S1TELNR', SITELNR
VDEFINE-'S1FAXNR', SIFAXNR
VDEFINE-'S10OE', S10E
VDEFINE-'S1RAUM', SIRAUM
VDEFINE-'S1KOS', S1KOS
VDEFINE-'QSCAN', QSCAN

SET QSCAN = 'ALL'
VDEFINE-'QSARG', QSARG

VDEFINE-'DINAME', DINAME
VDEFINE-'D1TCODE', DITCODE
VDEFINE-'DITELNR', DITELNR
VDEFINE-'D1OE', D10OE
VDEFINE-'D1RAUM', DIRAUM
VDEFINE-'D1KOS', D1KOS
VDEFINE-'D1PST',D1PST
VDEFINE-'D1ORT', D1ORT
VDEFINE-'D1FAXNR', DIFAXNR
VDEFINE-'D1PSA',D1PSA

SET NAMELIST = (!

'"D1PSA ' !
'DINAME ' !
'DITCODE ' !
'DITELNR ' !
'D1OE ' !
"D1PST ' !
"D1ORT ' !
'DIRAUM ' !
'D1KOS ' !
'"DIFAXNR ' !
')l
TBCREATE-'ETB ', ,NAMELIST, 'NOWRITE', 'REPLACE'
TBADD-'ETB ', NAMELIST
TBDELETE-'ETB '
K e e e — ———
*
K e e e — ———
OPEN-I9
DO-FOREVER
GET-I9 AT-EOF DOQUIT ATEND
TBADD-'ETB ', NAMELIST
DOEND
K e e
*

CONTROL-'"NONDISPL', "ENTER'
TBTOP-'"ETB !
TBDISPL-'ETB ', '"QPETBHO1"

16-12 QPAC-Batch Reference Manual

DO-WHILE RC < 8

TBDISPL-'ETB !

IF RC > 4 THEN GOTO EXIT ETB IFEND
SET QSCAN = 'SCAN'

SET DINAME = SI1INAME
SET DITELNR = SI1TELNR

SET D1OE = SI10E
SET DIRAUM = S1RAUM
SET D1KOS = S1KOS

x o

SET QSARG = v !
'"D1NAME, GE, ' !
'"DITELNR, GE, ' !
'D10E, GE, ' !
"D1RAUM, GE, ' !
'"D1KOS,GE) '

K e e e e e e e e o — —— —— —— —— —— —— —— —— — — — — —— — — — —— — — — — — — — —— — — — — —— — — — — —— — o —— ——
TBSARG-'ETB ',' '," ', ' ' OSARG
CONTROL-'NONDISPL', 'ENTER'

TBDISPL-'ETB ', "QPETBHO1"

IF RC > 4 THEN GOTO EXIT ETB IFEND

DOEND

K e e e e e e e — — —— —— —— —— —— —— —— — —— —— — —— — — —— —— —— — — — — — —— — — — — — — — — — o —— — o —— ——
EXIT ETB:

TBCLOSE-'ETB '

VRESET-

CLOSE-I9
END

QPAC-Batch Reference Manual 16-13

Panel Definition: Example QPACETBHO01

yATTR DEFAULT (%+!)
¢ TYPE (TEXT) COLOR (WHITE) INTENS (LOW)
S TYPE (TEXT) COLOR (TURQ) INTENS (LOW)
! TYPE (TEXT) COLOR (red) INTENS (LOW)
° TYPE (TEXT) COLOR (BLUE) INTENS (HIGH)
TYPE (OUTPUT) COLOR(YELLOW) INTENS (LOW) JUST (ASIS)
_ TYPE (INPUT) COLOR (RED) INTENS (LOW) JUST(ASIS) HILITE (USC
* TYPE (OUTPUT) COLOR (GREEN) INTENS (LOW) JUST (ASIS)
) BODY
—— Internes Telefonbuch -----————---—--——-
$COMMAND ===> ZCMD $SCROLL ===> SCIN
%$Generischer Such-Begriff
+Name: 27 +TelNr: 7 +0E: 7 +Raum: 7
%$PSA Vorwa/TelNr Name OE PST ORT RAUM KOS FAX
) MODEL ROWS (&QSCAN)
*7 *7 *7 *7 *7 *7 *7 *7 *7 *7
) INIT
.HELP = QHETBHO1
.ZVARS = "' (+
S1NAME +
S1TELNR +
S10E +
S1RAUM +
S1KOS +
D1PSA +
D1TCODE +
DITELNR +
D1NAME +
D1OE +
D1PST +
D1ORT +
D1RAUM +
D1KOS +
D1FAXNR +
) |l
VGET (S1NAME
S1ITELNR
S10E
S1RAUM
S1KOS
S1FAXNR) PROFILE
IF (&S1NAME = &7Z) &S1NAME = '*x!
IF (&S1TELNR = &Z) &S1TELNR txt
IF (&S10E = &Z) &S10E vt
IF (&S1RAUM = &7Z) &S1RAUM = '*x!
IF (&S1KOS = &7Z) &S1KOS vt
IF (&S1FAXNR = &Z) &S1FAXNR txt

16-14 QPAC-Batch Reference Manual

JREINIT
REFRESH (ZCMD
S1NAME
S1TELNR
S10E
S1RAUM
S1KOS
)
) PROC
IF (&S1NAME = &Z) &S1NAME = 'x!
IF (&S1TELNR = &Z) &S1TELNR vkt
IF (&S10E = &Z) &S1OE vkt
IF (&S1RAUM &Z) &S1RAUM vkt
Command ===> Scroll ===> PAGE
IF (&S1KOS &Z) &S1KOS = 'x!
IF (&S1FAXNR = &Z) &S1FAXNR vkt
VPUT (S1NAME
S1ITELNR
S10E
S1RAUM
S1KOS
S1FAXNR) PROFILE
) END
CLIST Definition Example
PROC
CONTROL MAIN NOFLUSH NOLIST NOCONLIST NOSYMLIST MSG
/* CALL QPAC ISPF */
ISPEXEC LIBDEF ISPLLIB DATASET ID('QPAC.LOADLIB') STACK
ALLOC FI (QPACPGM) DA ('USER.QPGM') SHR REUS
ALLOC FI (QPACLIST) SYSOUT (A)
ALLOC FI (QPETBHCO) DA ('VSAM.HOSTETB.OSYS.CO') SHR REUS
ALLOC FI (QPETBHP1) DA ('VSAM.HOSTETB.OSYS.P1') SHR REUS
ALLOC FI (QPETBHP2) DA('VSAM.HOSTETB.OSYS.P2') SHR REUS
ALLOC FI (QPETBHP3) DA('VSAM.HOSTETB.OSYS.P3') SHR REUS
ALLOC FI (QPETBHP4) DA ('VSAM.HOSTETB.OSYS.P4') SHR REUS
ISPEXEC SELECT PGM(QPAC) PARM(QPGM=QPACETBH) +
NEWAPPL (ETBH) NEWPOOL PASSLIB MODE (FSCR)
FREE FI (QPETBHCO)
FREE FI (QPETBHP1)
FREE FI (QPETBHP2)
FREE FI (QPETBHP3)
FREE FI (QPETBHP4)
FREE FI (QPACLIST)
FREE FI (QPACPGM)
ISPEXEC LIBDEF ISPLLIB
END

QPAC-Batch Reference Manual 16-15

Appendix A. Basic Instruction Formats (Summary)

Overview

In this appendix the most important instruction formats of the former QPAC-Batch
Basic Part are summarized.

These instruction formats do not support symbolic addressing nor do they support
any form of automatic data conversion and should therefore, whenever possible, be
replaced by the new high-level-format of the QPAC SET instruction or at least by the
implicit position symbols.

IPOS1,0P0OS1, 80

Imperative Instructions and Operations

General Formats

FROM-ADDRESS , TO-ADDRESS , OPERATION, LENGTHS

1. FROM-ADDR,TO-ADDR,OPERATION,FROM-LENGTH,TO-LENGTH
2. FROM-ADDR,TO-ADDR,OPERATION,FROM-LENGTH

3. FROM-ADDR,TO-ADDR, FROM-LENGTH

4. FROM-ADDR,TO-ADDR,EDIT-MASK

FROM-ADDR can be: iadr = input area address
wadr = work area address
lit = literal / constant

TO-ADDR can be: oadr = output area address
wadr = work area address

OPERATION is an operation code
LENGTH is always given in bytes

EDIT-MASK is an edit literal

For further, more detailed information please consult Chapter 7: The High-
Level Format Instruction SET.

QPAC-Batch Reference Manual A-1

Format 1

iadr,ocadr,op,1i,1o0

wadr,wadr T

1it T length of output field
length of input field

operation code

address of output field

address of input field

This format is used for all instructions that can have two lengths, e.g. processing of
packed fields.

Format 2

iadr,oadr,op,1
wadr ,wadr
1it

This format is used for all instructions needing only one length, e.g. certain move
operations.

Format 3

iadr,oadr,1
wadr,wadr
1it

Special format for simple move operation.

Format 4

iadr,oadr,editmask
wadr,wadr

Special format for editing operations.

For further, more detailed information please consult Chapter 7: The High-
Level Format Instruction SET.

A-2 QPAC-Batch Reference Manual

Literals / Constants

Character constants

The value is the character string between the two
apostrophes.

The format attribute C can be omitted. An apostrophe in
the character string can be defined by doubling it.

e.g. C'JOHN''S'

Hexadecimal constant
The hexadecimal characters between the apostrophes
are taken as a constant.

e.g. X'4040F1"

Packed constant

The decimal digits between the apostrophes are converted
to packed format and used as an arithmetic value.

A minus sign can be defined, and if it is missing, the value
is considered to be positive.

e.g. P'-10'
P'10-"

Fullword constant

The decimal digits between the apostrophes are converted
to binary format and used as an arithmetic value.

A minus sign can be defined, and if it is missing, the value
is considered to be positive.

A fullword definition always results in a 4 byte binary
constant.

e.g. F'-100"
F'100-

For further, more detailed information please consult Chapter 7: The High-
Level Format Instruction SET.

QPAC-Batch Reference Manual A-3

Simple Move Operation

iadr,oadr,1
wadr ,wadr
1it

e iadr is logically moved to oadr.
The length refers to bytes.

1,1,80
180,25, 30

e Instead of iadr and ocadr a wadr can be defined, wadr being a working storage
address from 5000 - 20999.

5000,7100,100
6230, 6510, 8

e Instead of iadr any type of constant can be defined.

o If the length of the operation is determined by a literal, the length need not to be
specified in the instruction. However, if the length is specified, it must be in
accordance with the defined literal.

C'QPAC', 1,4
C'QPAC',1

P'125',6006,2
P'125',6006

X'40',7000,1
X'40',7000

F'1',5000,4
F'1',5000

e If no length is specified on simple move operations a length of 1is assumed.

6010, 6020 [,1]

For further, more detailed information please consult Chapter 7: The High-
Level Format Instruction SET.

A-4 QPAC-Batch Reference Manual

Boolean Operations

Boolean AND

iadr,oadr,AND, 1
wadr,wadr

Cl]

Xl 1

e The AND function is applied to iadr and oadr.
e The result is stored in oadr.

e The length refers to bytes.

o If nolength is defined, a length of 1 is assumed.

1+1=1
1,7000,AND, 100 1+0=0 both 1 => 1
X'40',5000, AND 0+1=0 all other cases => 0
0+0=0

Boolean OR

iadr,oadr,OR, 1
wadr ,wadr

Cl]

Xl]

e The OR function is applied to iadr and oadr.

e The result is stored in oadr.

e The length refers to bytes.

e If no length is defined, a length of 1 is assumed.

1,7000,0R,100
X'F0',5700,0R

both 0 =>0
all other cases => 1

cCOo -
+ + + +
= RN N
[T
QO A

For further, more detailed information please consult Chapter 7: The High-
Level Format Instruction SET.

QPAC-Batch Reference Manual A-5

Boolean XOR

iadr,oadr,X0OR, 1
wadr,wadr

Cl]

Xl 1

e The XOR function is applied to 1adr and oadr.
e The result is stored in oadr.

e The length refers to bytes.

o If nolength is defined, a length of 1 is assumed.

both equal => 0
all other cases => 0

1,7000,X0R,100
X'F0O',5100, XOR

OO A
+ + + +
O -0 -
mm i n
O - -0

For further, more detailed information please consult Chapter 7: The High-
Level Format Instruction SET.

A-6 QPAC-Batch Reference Manual

Algebraic Operations

Addition

iadr,ocadr,A,1,1
wadr,wadr
Pl 1

e iadris added to cadr.
e Both fields are packed fields.
e The lengths refer to bytes.

1,5,A,8,8
10,2,A,8,4

e Instead of iadr and oadr a wadr can be defined, wadr being a working storage
address from 5000 - 20999.

6000,6050,A,8,8
100,6200,A,5,8

e Instead of 1adr a packed constant can be defined.

o |If the length of the operation is determined by a literal, the length need not to be
specified in the instruction. However, if the length is specified, it must be in
accordance with the defined literal.

P'125',6020,A,,8
P'125',6020,A,2,8
P'125-',6030,A,,8

o If no length is specified on operations with packed fields a length of 8 is
assumed.

6010,6020,A [,8,
100,6010,A,5 [,8]
P'125',6020,A [, 2,

8]

8]

e This length default value is valid for all operations that process packed fields: 2,
s, M, D, zA, CB, CD, P, U.

o Exception: packed literal without operation code:

P'100',60

For further, more detailed information please consult Chapter 7: The High-
Level Format Instruction SET.

QPAC-Batch Reference Manual A-7

Subtraction

iadr,ocadr,S,1,1
wadr,wadr
PI 1

e iadris subtracted from ocadr.
e Both fields are packed fields.
e The lengths refer to bytes.

1,5,5,8,8
10,2,5,8,4

e Instead of iadr and oadr a wadr can be defined, wadr being a working storage
address from 5000 - 20999.

6000,6050,5,8,8
100,6200,s,5,8

e Instead of 1adr a packed constant can be defined.

o |If the length of the operation is determined by a literal, the length need not to be
specified in the instruction. However, if the length is specified, it must be in
accordance with the defined literal.

pP'125',6020,5,,8
pP'125',6020,5,2,8
P'125-',6030,5,,8

o If no length is specified on operations with packed fields a length of 8 is
assumed.

6010, 6020, s [,8,8]
100,6010,5,5 [,8]
P'125',6020,5 [,2,8]

e This length default value is valid for all operations that process packed fields: 2,
s, M, D, ZA, CB, CD, P, U.

o Exception: packed literal without operation code:

P'100"',60

For further, more detailed information please consult Chapter 7: The High-
Level Format Instruction SET.

A-8 QPAC-Batch Reference Manual

Multiplication

iadr,ocadr,M,1,1
wadr,wadr
Pl 1

e oadris multiplied by iadr.

e The result (product) is stored in cadr.

e Both fields are packed fields.

e The lengths refer to bytes.

e Overflow data may be truncated in the result field without warning.

5,10,M,8,8
15,22,M,4,8

Instead of iadr and cadr a wadr can be defined, wadr being a working storage
address from 5000 - 20999.

6000,6050,M,8,8
100,6200,M,5,8

e Instead of 1adr a packed constant can be defined.

o |If the length of the operation is determined by a literal, the length need not to be
specified in the instruction. However, if the length is specified, it must be in
accordance with the defined literal.

P'125',6020,M,,8
P'125',6020,M,2,8
pP'125-',6030,M,,8

e If no length is specified on operations with packed fields a length of 8 is
assumed.

6010, 6020,M [,8,8]
100,6010,M,5 [,8]
P'125',6020,M [,2,8]

e This length default value is valid for all operations that process packed fields: 2,
s, M, D, ZzA, CB, CD, P, U.

o Exception: packed literal without operation code:

P'100',60

For further, more detailed information please consult Chapter 7: The High-
Level Format Instruction SET.

QPAC-Batch Reference Manual A-9

Division

iadr,ocadr,D,1,1
wadr,wadr
Pl 1

e oadris divided by iadr.

The result (quotient) is stored in oadr, iadr is the divisor.

A remainder is not available.

Both fields are packed fields.

The lengths refer to bytes.

Division by zero results in a quotient of 0. The length of the divisor should not
exceed 8 bytes, to prevent truncation of leading digits.

5,10,D,8,8
15,22,D,4,8

e Instead of iadr and oadr a wadr can be defined, wadr being a working storage
address from 5000 - 20999.

6000,6050,D,8,8
100,6200,D,5,8

e Instead of iadr a packed constant can be defined.

o |If the length of the operation is determined by a literal, the length need not to be
specified in the instruction. However, if the length is specified, it must be in
accordance with the defined literal.

P'125',6020,D,,8
pP'125',6020,D,2,8
p'125-',6030,D,,8

e If no length is specified on operations with packed fields a length of 8 is
assumed.

6010,6020,D [,8,8]
100,6010,D,5 [,8]
P'125',6020,D [,2,8]

o This length default value is valid for all operations that process packed fields: 2,
s, M, D, ZA, CB, CD, P, U.

o Exception: packed literal without operation code:

P'100',60

For further, more detailed information please consult Chapter 7: The High-
Level Format Instruction SET.

A-10 QPAC-Batch Reference Manual

Conversion Operations

Packed to Binary Conversion

iadr,o0adr,CB,1,1
wadr,wadr
PI 1

Convert packed field iadr to binary field cadr.

The iadr field length can be between 1 and 16 bytes.

The oadr field has a length of between 1 and 4 bytes and need not be aligned to
a word boundary.

5,10,CB, 8,4
10,22,CB,16,4

Instead of iadr and cadr a wadr can be defined, wadr being a working storage
address from 5000 - 20999.

6000, 6050,CB, 8,4
100,5200,CB,5,4

Instead of iadr a packed constant can be defined.

If the length of the operation is determined by a literal, the length need not to be
specified in the instruction. However, if the length is specified, it must be in
accordance with the defined literal.

p'125',7250,CB,, 4
p'125',7250,CB,2,4

If no length is specified, a length of 8 is assumed for packed fields, and a
length of 4 is assumed for binary fields.

6010,5010,CB [,8,
100,5110,CB,5 [,4]
p'125',5020,CB [,2,

4]

4]

For further, more detailed information please consult Chapter 7: The High-
Level Format Instruction SET.

QPAC-Batch Reference Manual A-11

Binary to Packed Conversion

iadr,o0adr,CD,1,1
wadr,wadr
Fl 1

e Convert binary field iadr to packed decimal field ocadr.

e The iadr field has a length of between 1 and 4 bytes and need not be aligned to
a word boundary.

e The oadr field length can be between 1 and 16 bytes.

5,10,CDh,4,8
10,22,Cb,4,5

o Instead of iadr and oadr a wadr can be defined, wadr being a working storage
address from 5000 - 20999.

5000,6000,CB, 4,8
100,6200,CB, 4,4

e Instead of iadr a fullword constant can be defined.

e |If the length of the operation is determined by a literal, the length need not to be
specified in the instruction. However, if the length is specified, it must be in
accordance with the defined literal.

F'1',6000,CD,,8
F'1',6020,CD, 4,8

o If no length is specified, a length of 4 is assumed for binary fields, and a length
of 8 is assumed for packed fields.

5010,6010,CD [,4,8]
100,6110,CD,4 [,8]
F'1',6020,CD [,4,8]

For further, more detailed information please consult Chapter 7: The High-
Level Format Instruction SET.

A-12 QPAC-Batch Reference Manual

Pack Operation

iadr,ocadr,P,1,1
wadr,wadr

e Pack the zoned-decimal field in iadr into cadr

e The signin oadr is set to F after operation unless the zoned-decimal value is
negative (sign D).

e Packing a blank field is therefore possible.

5,10,P,4,8
10,22,p,4,5

e Instead of iadr and oadr a wadr can be defined, wadr being a working storage
address from 5000 - 20999.

5000,6000,P,16,8
100,6200,P,8,4

e Instead of iadr a zoned-decimal constant can be defined (character
constant with numeric contents).

o If the length of the operation is determined by a literal, the length need not to be
specified in the instruction. However, if the length is specified, it must be in
accordance with the defined literal.

'123',6000,p,,8
c'123',6000,p,,8
'123',6020,P,3,8

o If no length is specified, a length of 16 is assumed for zoned-decimal fields and
a length of 8 is assumed for packed fields.

5010,6010,P [,16,8]
100,6110,P,4 [,8]
'123',6020,P [,3,8]

For further, more detailed information please consult Chapter 7: The High-
Level Format Instruction SET.

QPAC-Batch Reference Manual A-13

Unpack Operation

iadr,o0adr,U,1,1
wadr,wadr

¢ Unpack the packed field iadr into zoned-decimal field oadr.

5,10,U,8,16
10,22,0,2,3

e Instead of iadr and ocadr a wadr can be defined, wadr being a working storage
address from 5000 - 20999.

6000,5000,U,8,16
6215,100,0,4,8

e If no length is specified, a length of 16 is assumed for zoned-decimal fields and
a length of 8 is assumed for packed fields.

6010,5010,U [,8,16]
100,5110,U0,4 [,16]

Zero Add Operation

iadr,oadr,2A,1,1
wadr,wadr
Pl 1

e iadris a packed field and is moved arithmetically to cadr.
e The contents of oadr prior to this operation are lost.

e Lengths refer to bytes.

e Instead of iadr and oadr a wadr can be defined.

e Instead of 1adr a packed constant can be defined.

1,5,ZA,8,8
6000, 5000, zA
p'0',5100,2A,1,8

For further, more detailed information please consult Chapter 7: The High-
Level Format Instruction SET.

A-14 QPAC-Batch Reference Manual

Hexadecimal Conversion

iadr,oadr,CX,1
wadr,wadr

e iadris converted to a hexadecimal printable format in oadr in order to, for
example, print it.

e oadrlength is twice the iadr length.

e The length refers to bytes.

'QPAC', 5000 results in:

TO-01

5000,1,CX,4 1...5....10...5....20..
PUT-01 D8D7C1C3

For further, more detailed information please consult Chapter 7: The High-
Level Format Instruction SET.

Editing Operations

User Specified Edit Masks

iadr,ocadr,E'literal’
wadr ,wadr

e The contents of the packed iadr field are edited into oadr using the literal as
edit mask.

e The edit mask determines the length of the output and therefore must take into
account the length of the input iadr field.

e The first character in the mask is the fill character.

e Digit positions are defined by a 9, but positions on which zero suppression is
required are defined by a Z instead of a 9.

e Punctuation symbols or any other required symbols can be included in the mask,
as can the minus sign (-) in the right most mask position.

15,10,E" 999999'
6000,1,E'38222229-"
3,8,E' Z2Z.Z2Z9,99-"
CDATE, 90,E' 99.99.99"
CTIME,100,E' 99:99:99"

QPAC-Batch Reference Manual A-15

User Defined Hexadecimal Edit Masks

iadr,ocadr,EX'literal’
wadr,wadr

e Same editing rules as under E.
e The mask is defined with hexadecimal characters according to assembler
conventions.

15,10,EX'40F9F9F9FOFI9F 9"
6000,1,E" 999999"

Predefined Edit Masks

iadr,oadr,EDA, 11,12
EDAZ
EDAS
wadr,wadr

Mask type A= AAAAAA-

e The packed iadr field is edited into oadr according to mask type A.
e This extended edit operation enables editing without punctuation.

e A negative packed field results in a '-' sign stored in the right most position of
oadr.

e Zero suppression takes place if either EDAZ or EDAS is specified:
EDAS results in zero suppression up to, but not including the last digit.
EDAZ results in zero suppression up to, and including the last digit.

e 11 isthe length of iadr in bytes, 12 is the number of bytes, without the sign,
that are needed for the edited value starting at the right most digit.

e If nolength is specified for 11, a length of 8 is assumed.

e If 12 is missing, the length is calculated according to 11.

10, 65,EDAZ,5,4

pos.10 = X'019376219D'" 11=5
fully edited = 19376219~
pos.65 = 219- 12=4

A-16 QPAC-Batch Reference Manual

iadr,oadr,EDB, 11,12
wadr ,wadr

Masktype B=AA.AA . AA . AA

e The packed iadr field is edited into oadr according to mask type B.

e This extended edit operation enables editing in groups of 2 decimal digits,
separated by a full stop.

e A negative iadr value is not marked as such.

e Zero suppression is not possible.

e 11 isthelength of iadr in bytes, 12 is the number of bytes required for the
edited value, starting at the right-most digit, including internal punctuation
characters.

e If nolength is specified for 11, a length of 8 is assumed.

e If 12is missing, the length is calculated according to 11.

10, 65,EDB, 5,8

pos.10 = X'019376219D' 11=5
fully edited 19.37.62.19
pos.65 = 37.62.19 12=8

The editing rules for the following edit mask are the same as those defined for
EDB:

iadr,oadr,EDC, 11,12
wadr ,wadr

Masktype C=AA:AA:AA:AA:AA

The editing rules for the following edit masks are the same as those defined for
EDA:

iadr, oadr,EDD, 11,12
EDDZ
EDDS

Masktype D= AAA. AAA . AAA AAA

iadr, oadr,EDE, 11,12
EDEZ
EDES

Masktype E=AAA, AAA AAA AA-

QPAC-Batch Reference Manual A-17

EDFZ
EDFS

iadr, oadr,EDF, 11,

12

Masktype F= AAA'AAA'AAA AA-

EDGZ
EDGS

iadr, oadr,EDG, 11,

12

Masktype G= AAA AAA AAA-

EDHZ
EDHS

iadr, oadr,EDH, 11,

12

Masktype H=AAA AAA, AAA-

EDIZ
EDIS

iadr, oadr,EDI, 11,

12

Masktype |= AAA . AAA . AAA-

EDKZ
EDKS

iadr, oadr,EDK, 11,

12

Masktype K= AAAAAAAAAA AA-

A-18 QPAC-Batch Reference Manual

Special Value Instructions

General format

At initialization time, QPAC generates special registers, whose contents may be of
interest to the user.

These registers cannot be altered by the user, they can only be accessed, i.e. used
as input fields in an instruction. Their contents can be made available by special
instructions that are syntactically simple moves.

Instead of iadr, the name of the special register is used, the length is defined
implicitly by the name of the register.

System Date

DATE, ocoadr
wadr 8 bytes value

After executing this instruction, cadr or wadr contain the actual system date at the
time the QPAC started, in the following format:

C'DD.MM.YY'

System Time

TIME, oadr
wadr 8 bytes value

After executing this instruction, cadr or wadr contain the actual system time at the
time the QPAC started, in the following format:

C'HH:MM:SS'

For further, more detailed information please consult Chapter 7: The High-
Level Format Instruction SET.

QPAC-Batch Reference Manual A-19

Current Date/Time

CDTIME, oadr
wadr 2 x 4 bytes packed (8 bytes)

After executing this instruction, the first 4 bytes field contains the current date, the
second 4 bytes field the time, in the following packed format:

PL4'DDMMYY' PL4 'HHMMSS'

X'0ODDMMYYCOHHMMSSC'

1

positive signs
leading zeroes

Attention: CDTIME is only valid with the basic instruction format!

A-20 QPAC-Batch Reference Manual

The IF THEN ELSE Instruction (Basic Format)

General Format of the Condition Instruction

AND
OR:| ELSE

>>- IF X condition + QPAC—instruction:l—IFEND -><
|—THEN J

For further, more detailed information please consult Chapter 8: Logic Control
Commands.

Format 1 - Logical Comparison (CLC)

IF iadr,1li,op,iadr THEN

T— Refers to address in input/output/work area
Comparison operator (explained below

Length of the iadr field (max. 4096 bytes)
Refers to address in input/output/work area

e Valid comparison operators:

EQ =equal

NE = not equal

GT = greater than

LT =less than

GE = greater or equal
LE =less or equal

e Instead of an iadr, a wadr or an oadr can always be defined.

QPAC-Batch Reference Manual A-21

Format 2 - Arithmetic Comparison of Packed Fields (CP)

IF iadr,li,op,iadr,li THEN

T— Length of 2nd iadr field

Refers to address in input/output/work area
Comparison operator (see under format 1)
Length of 1st iadr field

Refers to address in input/output/work area

o If a second length is defined, QPAC assumes a comparison of packed fields.

Format 3 - Comparison with Constants (Length Specified)

IF iadr,li,op,literal THEN

T— Literal/Constant
Comparison operator (see under format 1)

Length of the iadr field
Refers to address in input/output/work area

e The second comparison operand can be defined as a literal.
e The length specified must correspond to that of the literal.

e In case of a packed literal, the length is specified as required.

Format 4 - Comparison with Constants (Length Not Specified)

IF iadr,op,literal THEN

T L Literal/Constant

Comparison operator (see under format 1)
Refers to address in input/output/work area

o |If the literal used is character or hexadecimal, the first length and its positional
comma can be omitted. If the length is defined, it must correspond to that of the
literal (see format 3).

o When using packed literals, the length must be defined, otherwise 8 is assumed
for the iadr field.
When using 'full word' literals, a length of 4 bytes is assumed.

e the comparison is made logically or arithmetically, according to the rules
specified under format 3.

A-22 QPAC-Batch Reference Manual

Format 5 - Logical Comparison with Keyword

IF iadr,li,op, keyword THEN

T— Keyword (explained below)
Comparison operator (see under format 1)

Length of the iadr field
Refers to address in input/output/work area

o Valid keywords are:

NUMERIC = zoned decimal format
SPACE = blank
ZERO = zoned decimal format

e The compared field must be in character or zoned decimal format,
the default length value is 1 byte, maximum length 4095 bytes.

PACKED = packed format
o Field contents are checked to see whether they are correctly packed,

the default length value is 8.

Format 6 - Binary Arithmetic Comparison

IF Xn,op,Xn THEN
Xn,op,F'nnn'
Xn, op, iadr
Xn, op, wadr

T T— Index register / full word / area address

Comparison operator (see under format 1)
Index register

e The contents of an index register can be compared with another index register,
with a full word literal, with a working storage area, or with an input field.

e A length should not be defined; a value of 4 is assumed.

For further, more detailed information please consult Chapter 8: Logic Control
Commands.

QPAC-Batch Reference Manual A-23

IF 10,EQ,C'1l' THEN
IF 20,EQ,C'2' THEN
IF 30,EQ,C'3' THEN
| 1,1,80
IFEND
P'1',6020,A
IFEND
P'1',6010,A
IFEND

IF 10,EQ,C'l" THEN

IF 20,EQ,C'2' THEN

IF 30,EQ,C'3' THEN
IF 40,EQ,C'4' THEN

IF 50,EQ,C'5' THEN

~
~

~

SN
~

SN
~

DS

~

IF 60,EQ,C'6' THEN

~

SN
~

SN
~

SN

~

~

~

A-24 QPAC-Batch Reference Manual

Index

.................................... 10-7
e (@] 1 o] o) PP
#
....................................... 12-4
H (NS SIgN).cciii e
*
....................................... 2-1
B 905 = o1
@
....................................... 12-5
@ (A1 SIGN) et
+
............................ 11-7
FWP= (DArameter) ...
.. 6-11
A i
Ay -
L o
D o
D i
S "
S "
D -
D "
S D s
D o
D o
D m
D m
DD o
D o
S o
S -
D s
D e
D e
D re
D e
DG e
D e
=EDHS e
S e
D re
D s
D s
o) s
e D re
B yrel 2
S n
T re
S n
SO R et

QPAC-Batch Reference Manual X-1

PR 7-7
O | PR 7-9
A

=] o1=T g Lo B oTo Yo 1= T PSPPI 4-8
ADENd dOCUMENTATION ... ettt ettt e s 1-8
ACCU (ACCUMUIBEOIS) ..ottt e e et e e ettt e e e et e e e eaaaaeaees 6-13, 6-19
F YO 01 U o =T =T 4 L= (=1 o TP UPPPPPUPPIN 11-27
F= Lo | 1] F=) (o = 6-13, 6-19
7 PPN 6-15, 6-19
F O I AV =R (o] o) 1o) PO 10-9
F= o Lo (Yo I =Yoto o E-ToTo U Lo} (=Y 0= N 6-15, 6-19
b= Lo (o 1 1o o ISP 7-2,7-6
A D D P O P . e et e e et e e e ettt e e et e e eett e e eett e aeeatnaaaaaes 16-1
I PSP 2-15, 3-3
F I o 1N = 1 i I PP 8-1, 8-3
ALPHABETIC-LOWER ... oottt ettt e e e e e e et e e e e et e e e e et e e e e e s e eeeaaanns 8-1, 8-3
ALPHABETIC-UPPERottt et e e e e et e e et e e e et e e e et e e aeaaanaes 8-1, 8-3
S N PSP 8-3, 8-4, 8-6
F N = PSP SPPPPORPPIN 2-17
F N 0 4 = PPN 2-17
F N I N PPN 2-17
N N 5 1 PSPPI 2-17
ANYDIRBL ..ttt e ettt e e et e e e e et e e e e et e e e ettt e e ettt e e e ettt e e e eat e e eeatn e aeeatn e aaaes 2-17
F N 0] PPN 2-17
ANYDSORGttt oo et e e e e e e e e e e ee e e e e a— e e e et e e eea e aaaraaaae 2-17
AN Y E X P DT ..ottt et et e et e e e e e et e e e e e e e e et e e e et e e e et e e aeat e arataaaae 2-17
ANY LABEL .ooeniiiii et oo e e e e e e e e et e e e aaaraaaae 2-17
AN Y M C L A S oot et e et e et e e e e e e e e e e e e e e et e e et aaaraaaaa 2-17
ANY P RIS ..o e et e e e e e a e aaes 2-17
AN Y R C oo e e e e e e e e e e e e et e e e aaar e 2-17
N g = 0 PSPPI 2-17
N g =1 I N PSPPI 2-17
N N 4 PSPPI 2-17
F N ST O s PPN 2-17
ANY SE C S P e ettt e ettt e et et e e e eat e e eat e aaataaaae 2-17
N S e I 1 PPN 2-17
AN L] PSPPSR 2-17
F N A Y @ 1 I 1 PP PPPRRN 2-17
= 0] o] 13- 1 £ o T T 6-14, 6-19
Y T 1 RPN 6-14, 6-19
F o AN C e (o =T =10 1= 1= o T PPN 11-4
arithmetic OPEratioN COUESuiiii e e e e e e e e e e e e e e e een e eeeen 7-6
F S 7N (o o141 o 1 T PP 2-6
F NS YN et o T i o] et F= Y= T £ TP 2-6
= E] (o] S (oo 1 010 0 =1 1 1-5
N TP 6-16, 6-22
I =1 1 PP 3-5
N T O PSSP 3-5
auto commit COUNTEr (DB2) ...ouuiiiiiiii e e 6-13, 6-19
B

S 0T = 1 AR o] .1 F- | PP 7-6
L T o 1 = T 7-1
BACK-QIN (MQISEIIES) .. eeeiiiiet ettt ettt e e et e e et e e e et e e e et e e e e ta e e e eannns 14-7
=B EY= o 1 UL (0 =P 6-11
[T Y =2 T (O TP 11-1, 11-4
oY1 o0 o] =1 o | 7-2
B ettt e e e et et e et et e e ea e ae et e aeara e aar e aaaaa, 2-16, 6-15, 6-19
T I (o] o1 1o o) PP 2-3
o] F= PSSP 1-5, 12-1, 13-3

X-2 QPAC-Batch Reference Manual

002N V1 <G 7-2, 8-1, 8-3
o] F= T o1 T | o S 7-5, 7-6
I Y 174 =S 2-3
5 o 6-5
0] [0 3 Qi =Y g o | o T 2-1, 2-3, 2-8
o T 6-5
BO OKMARK ..ot 6-16, 6-22
[oToTo] (=TT T o] o1=T =1 (o = P 8-3
T = o] (=Y (=0 I Y d o] =TT o] o 1= PP 7-3
o] = (o] 1= £ 7 PSPPSR 8-5, 8-6
] 16-1
RO ATV Y 16-1
AT 6-16, 6-19
A AT I (o] o) (o]) PP 2-4, 2-5
C

O3 =1 07\ TP 6-14, 6-19
LOE o] = = (o (=] O PPN 7-1
CAD D RLEN G T H . e e et e e e e e e e e 6-16, 6-22
CAF SUPPOIE (DB2) ..ttt ettt ettt e et e e et e e e e e e e e e e eaa s 12-3
(07 I 1 I =S 6-14, 6-19
(03 I 1 = 14/ R 6-14, 6-19
(03 I 1 = 14 AT R 6-14, 6-19
CALD R ARN ... e e e 6-14, 6-19
(07 I B T 1T [P 6-14, 6-19
CALDRWKNR ...ttt et et et e e e et e et e et e e e et e e e e e e e e e 6-14, 6-19
CALEND AR () et ittt ettt ettt et e et e e e e e e e e et e et 11-1, 11-6
(o= 1T IR=T0] o] (o U 1 {10 =T PP ORPRPRPRN 9-1
CALL=SUB (PARM OPtION) c1uiiiiiiiiiiii ettt ettt e e e e e e e e e e e e e et e e et e e et e e et e eanans 1-6
(OF A\ I (oY= To [oo [V1 M1 1) (U [e] 1 o] o H T 9-4
CANCE! ISP (ALLOC) ittt ettt et 6-16, 6-19
CAPS=0OFF/ON (PArameter)couu ettt et e et eeeab e 11-21, 11-23
CARD (file Organization)oouuiiiii e 2-2
Card file defiNitiON ... e 2-2
(o= T] A 0 Lo (U (= 3PP 8-8
L0707 7N [N 6-14, 6-19
10104 & I (oY o) (o]0) IFT TSP PPTPPPN 2-6
L0100 = SR 6-14, 6-19
L1 RSP 6-13, 6-19
(01T 1] = 2-16, 6-16, 6-19
LT I 11V N 6-13, 6-19, 20
Lo2=Y o1 18] Yo £= (P 6-14, 6-19
(o1 LU YT T ST OPR PP 6-14, 6-19
Lol aF=TaTo T=To Bo F=) (= I (o O PSP 6-16, 6-20
Changed timME (FCA) . .. et e e e e et e eeeaa s 6-16, 6-20
CHAN GEF () etniiiiiii it e e e e e e e e e e e e e et e e e e era s 11-1, 11-10
L0 1 L] (T 11-1, 11-10
L0 o N] L T PP 11-1, 11-11
(O] o | o =T =10 1= C= o T 11-13, 11-19, 11-21, 11-23
CICS system identification e 6-14, 6-19
CICS terminal identifiCationcouiuiii i et ea e 6-14, 6-22
CICS terminal operator identification ... 6-14, 6-21
(03 (O3S R V=TT g o [T a1) {171 4o o 1A 6-14, 6-19
(01 1027 10 N 6-14, 6-19
O NS T (o] o) 1]) TS PP 2-6
L0 I o o) 170 o) PSSP 13-1, 13-4
L0 I e 02 (o] o) 1] o) I PP 2-3
L1 o o (o] o140 o) ISP 2-3
(O I 1V 1A 5] 1 6-16, 6-22
CLIENTCODEPRAGE ... ot 6-16, 6-22
CLIENT N AME ... e ettt e e e e et e et e e e e e e aeeanes 6-16, 6-22
L0 I o TR 6-5
07 I 1 R 3-3

QPAC-Batch Reference Manual X-3

CLOSE-QIN (MQIS IS) ettt ettt ettt ettt e et e et e ettt e e e et e e e et eeeeaa s 14-7
(04 I e (o] o) 4T] o) P 13-1, 14-2
(61 I S O G (o] o) { o]) PSPPI 2-3
L1 I S (@ (o] o 1] o I R PSPPI 2-3
(O H) @ o Gl (] o] 1 o] o) ISP 2-3
L0 o 1SR 6-5
(08 AN 1= I N I o 6-17, 6-23
(010 =10] I ¢ =Yeo] fo IS (U (o] (0| {1 2-4, 6-10
(010 =1 a4 =L 6-10
16101 2] 34 = O (o] o) {1e] o | F PP RUPTRPPN 2-4
[oT0] Lo o 1SN PP 12-9
(o7 1T o o Vo 5 12-2, 12-4, 12-8
(oTo] [¥] g ¥ T = 1o 11N 12-4, 12-5
(oo g aT 011 aT=To I e 0T g T 1T o TS 8-3, 8-4
combined STrUCIUIE BIEMENT et e e e aees 8-4
(oo 0 0] 0 01T 01 £ P 1-5
COMMIT-QIN (MQ SIS) . eeuetitieetie ettt ettt e e e e e et e e e e e e e e et r e e e e e et e e et e e ean e eanaeeanaeennnns 14-6
L0 @ 11N = o T 11-1, 11-13
O @ 11N = TSP 11-1, 11-13
foZolnq] oF=T 1Yo g o] oT=T =1 (o] =TSP 8-2
fofo] aTox=) (=Y 1= 1 (=TSP 7-5
fofo] aTox=1 (=Y aT= 11 To] o PPN 7-2
foTo g Lo [ToT o To 1= {10 T4 Lo 1< 8-1
condition dependent INPUL fIlES et e 5-4
CONNECT (MQSEIIES) wuueiuuieiiiieeie ettt ettt et e et ettt e et e e et e e et e e et e eat e e et e ean e eataeennaeeenaes 14-1, 14-3
CONNECT-QN (MQSEIES) .t eeetttueieeeeeeeeeeeie e e e e e et ettt e s e e e e e e eee ittt e e e e aaeeeeasstnn s aaaeeeeeesntnnnaaeaeaaeeennes 14-4
CONN-QIN (MQISEIHES) - eeeeeieeeiiiiee e e e ettt e e e e e e e et eee et e e e e e eeeeataa e e aaaeeeeasstnn s aaaeeeeeeestnsnnaeaeaaeennnes 14-4
CONSOIE COMMUNICATION ...t e e ettt e e et e e e e e e eneanen 3-20
(070 11V 1 2 16-2
folo] a) o] le] gF= T r=Tox (=T N 2-6
LoTo a1V Z=T a o] = Tl (o TN o 1= 7-7
CONVEIT NEX 10 CNAr ..o e e e 7-7
COPYL/NOCOPYL (PARM OPtiON) couuiiiiiiii ettt e et e e et e e e e e e et e e et e e e et e e eneaeans 1-6
(0101 5 € 11 1=T 1 0] oT=T ¢ aT=T 1 o [Y 1-10
Creation At (FO A .. i ettt et 6-16, 6-20
(0T 1 o] g (] = 72 T O TPUPTPTT 12-1
(o Lo TR L= (=1 (= ToT= 0 1= N 1-8, 6-24, 12-4
(O3 1012 F=T 0 o ST T 1) {0 o £ o o TN 9-1
L I 1Y = 6-13, 6-19
Lot U =Y oY Ao £= 1 (=N 6-13, 6-19
current date and M ... 6-13, 6-19, 20
(odU =T o1 o 10 [T PPN 6-13, 6-19
(01015310] ST 6-14, 6-19
LT U1 =0T g oY 171 1o o I PN 6-14, 6-19
(018 1] =1 | I Y 6-14, 6-19
D

Lo =1 e= W o= E- T I g = L 1= YT R PSPPI 13-1
data Cclass NAME (ALLOC) ... it e e e e e e e e e e e aan 6-16, 6-19
data SECUNILY EXEENSIONS .. e i e et e e e e e e e e e e e 1-11
Aata SEL MAME .. 6-15, 6-19
data Set NAME (ALLOC) ...oui e e e e e e e e e aa e 6-16, 6-19
Data set ONIY COMMANAS .. iiuiiie e e e e e et e et e et e et e et e et een e en e e e eeaneen 2-13
data set organization (ALLOC)o e 6-16, 6-19
[0 NN 172X] N 2 6-17, 6-23
(o F=1 (= 6-13, 6-19, 20
N I = 6-13, 6-19
2 6-13, 6-19
day Of SYSIEM At ... e 6-13, 6-19
D] T2 0 Yo [PPSRt 13-6
] = 4 g Yo L= {5 0 T 13-7
(D)= = ToTo] o I 4 o o = TSP 13-6
DB record MOAE (DL ..oun e aaa 13-7

X-4 QPAC-Batch Reference Manual

DB2 data base definition.........c.ouiiiiiii e e et 12-1

(]2 5 e = T I o =T o 1= 12-3
D] =Y o] o TeT =TT o T PP TUPPPTPRTPPPIN 12-8
DB2 SYSEEIM 00 ..ttt e e ettt e e e e et eeata e aee 12-3
312524010 1/ | o PSPPSR 6-13, 6-19, 12-23
(D=3 A L (o] o] (Lo 3) TR PPN 12-3
DB2ID= (PARM OPLION) .ttt e ettt e e ettt e e e 1-8
] =T O I TP PSP PPPPPTPR 13-1
[TP UPPPPPPPPTRR 13-2, 13-6, 13-8
DIBIN .ttt e e e e e e e a e 6-15, 6-19, 13-5
[T TP PP PP PP 13-1
9= ST 12-4
5 10 N SR 2-16, 6-16, 6-19
5107 N O S 6-15, 6-19
101D o = [y = Y 6-15, 6-19
D I g BT gL N I S 6-16, 6-19
BB o= 1o g T= 3N (o 1Y 0 F= T 2 1) PSPPSRI 6-15, 6-19
D] OSSP PPPTT 2-16, 6-15, 6-16, 6-19
Dead Letter QUEBUE ettt et e et e et e et e et e e e e et e ea e eaas 14-1
DE LD SN AN Y Lttt ettt ettt b oo ettt et e ba b e e e e et et ba b e e e e e e e e anaaaa s 2-18
DE L E T ittt e oo et h e e e et et e bab e e e e et et taba e e e e eeeanaaaanas 3-12
(Y (=] SRR o 0= o | PP 13-9
deleted reCords COUNTEI U P E ... i it e e et e e e e e e e e eeanns 6-15,6-19
DI SR 6-17, 6-23
DELMOD-"loadmodule' INSIFUCLIONiiii e e e e e e e eeneas 9-8
DELMOD-symbolname iNStruCtioN i e e e 9-8
5 O USRI 3-21
(0] R O (o] o 1 o o) PP 2-3
3] | ST SS 6-16, 6-19
(1] (o] oo o 1 ISP 10-3
D1 (] o] 1o T o) PRSP 10-7
31 = ST ERPTRRN 2-16, 6-16, 6-19
direCtory bIOCKS (ALLOC) ... ittt e e e e e eaaaas 6-16, 6-19
Lol Tg=Toa (o] Vo] o Y/ OO PTTR 10-3
DISCONNECT (IMQSEIES) -.ututeeeeeeeieiei et e e ettt et e e e e e e e et e e e e e e e eeeeetnn e s e e e eeeeeeanen e eaeaeeeennennnnnn 14-3
DISCONNECT-QN (MQSEIES) .. eeeieeeiiti e e e eeee et e e e e e e ettt e e e e e e e e e eaatan e e e e e e eeeeeeanen e e aeeeeeennennnnen 14-7
[T O O Lo (Y [S =T 1= PPN 14-7
DISK (file Organization)...........couuiiiiieie e e 2-2, 2-7
D] o I PRSP PPPPTRTR 16-2
Lo 11V E=] o o PP 7-2, 7-6
diViSION remMaiNder fIEIAoiiiii e 6-13, 6-19
DIVREM e ettt e et bbb e e et et et 6-13, 6-19
DIVREM (division remainder field)i e 7-6
DN (=T (0 I oo o = PSPPSRI 13-6
DL/I DAtCh PrOCESSINGvu ittt e e ettt e e ettt e e e et e e e ee b e e e eean e eeaees 13-5
DL/l data base definition e e 13-1
DL/l data base Name (FCA) ...t e ettt e e e et e e e eeta e aees 6-15, 6-19
DL/I DB NAME (AYN@AMIC) ... ettt ettt e ettt e e et e e e e e et e e et e e ea e e ean e eeneeeanes 6-15, 6-19
DL/l key feedback area (FCA) ... et e e e e e 6-15, 6-20
DL/l key feedback area 1ength(FCA) e 6-15, 6-20
DL/l key field name (AYNAmIC) ... oo et e e eeenns 6-15, 6-20
DL/l number of SSA fields in USE (FCA) ... e 6-15, 6-22
(]I o a1 1T T =1 €= o 1= T S 13-5
DL/l PCB NUMDBET (AYN@MIC) ... eieiitieeeeit ettt e et e e e ettt e e e ettt e e e e eat e e e e eetn e eeeetneeaeee 6-15, 6-21
[]I I o T oY= L=< o T PSPPI 13-6
DL/l PSB NAME (AYNAIMIC) eituiiiiiiiiie ettt ettt e et e e et e e e e ettt e e e eeta e e e eeta e eeeeenaeaeees 6-15, 6-21
DL/ PSB NAME (FCA) ..ttt e ettt e e e n e e e e 6-15, 6-21
DL/l root segment Name (AYNAMIC)ciuuiiii e e e e e e e e e e e e ean s 6-15, 6-22
DL/ segment [eNGth (FCA) ..o e ettt e et e e e et 6-15, 6-22
DL/ s€gMeENt IEVEI (FCA) eniieii et e e e e e e e e e e e aeanes 6-15, 6-20
DL/ segmMent NAmME (FCA) .ot e e e e e e e e et e e et e eaan s 6-15, 6-22
DL/ SSA FIElds (FCA) .ttt ettt e e e e e e e e e 6-15, 6-22
D TP P P PP PP 3-12
DLET (DL/FFUNCLION) .ce ittt et e e e et e e e e e e e e e e et e e s s e eaaaeeeen 13-6

QPAC-Batch Reference Manual X-5

DLET INSIFUCHION (DL/I)..n ittt ettt e et e e et et e e e eaba e eeens 13-10

DY e (0T = 4 1=] (T) TSP 11-10, 11-11, 11-21, 11-23
5 14-1
0]] @ 1] oY oV 6-13, 6-19
DOBREAK INSTIUGCHION ... e e et et e et e et e e e e e e e et e et e e e e e neanens 8-12
(D L@ =] R = AN S = ¥ o3 1 o o 8-9
DO CSIZE ..o e 6-17, 6-23
[O3 1O o =1 T 6-17, 6-23
(DL @ 1= (N B T g 13 U o] o 8-9
DO-FOREVER INStIUCHION 1ottt e et e e e e et e e e e e enaes 8-11
DO-FOREVER INStIUCHION «.u.ieitiei et e e et e et e e e e e e enaenas 8-9
[D1O B oY s I T 1=1 { (U o] { (o] o N 8-9
DO QUIT NS TUCHION . e e e e 8-12
[D1O IO 101 BT =1 { (U] £ o] o IO 8-9
[DIO R U L\ I I o 1=1 { AU] £ o) o IO 8-11
[D1O B 6 L\ I | o 1=1 { (U] o) o IR 8-9
[DIO A o I ST 1] (U (o] 4 (o] o H TP 8-10
(@ R A o NI T 1= (U o] € o o N 8-9
(1O I T 1= {0 L3 £ (o o T 8-10
[I T 1= {0 (o3 £ o o TN 8-9
(D] | 2-16, 6-15, 6-16, 6-19
[N e o o]] o) I 2-3
[Y 1 6-16, 6-19
DUMMY (OS/390) .. iiitiieiiiiie ettt e et e et e ettt e e e et e e e e et e e e e et e e e e e e e e eaa e e eaaaas 2-10
DUMP (PARM OPtiON) o.uiiiiiiiiiiiiii ettt ettt e e e e e e e e e e e e e e e et e e e e st e e e eaannas 1-6
Lo (¥ g o 3N o] e To [¥ o1 o Ve HN PP PTPPTR 1-6, 4-8
[Y ;1 2-14, 2-15
dynamic file alloCation (Z/OS).... .o 2-13
AYNAMIC SQIL ..ottt ettt e e e e e aba s 12-4
E

N 6-5
[N Ao Y 1] 3 [T 10-2
10N N 6-13, 6-19
10 16-2
10 16-2
LYo 11 0= 1= 6-6, 7-1
D = 16-2
ELSE (IF iNSITUCHION) c.ui ittt e e e e e e et e e e e e e e e e et e e e eaaaes 8-1
o Y 1 8-8
] 5 4-1
ENA OF AAtADASE ... e 13-3
LY aTo I el 0 1111 01 o 1= SP TP 10-3
] NV 3 2= 1 (=T 0 1= o 4-1, 4-2, 5-1
BN o 3-21
o NI =L =1 5 T 8-3
eNntry SEqUENCE dataSetl.......coouu i e e e e 2-5
=L@ o (=Y o Vo I o) i 11 ISP 3-5, 3-15, 4-2, 5-4, 13-
=L@ 1Y (o o)1] o) R 10-3
EOP (€Nd Of PrOCESSING) .. ittt et e e et e e e e e e e e e e e e eeans 3-18
EPARM (external parameter @rea)ooouu i 6-14, 6-19
N Y e € N 1Y IO o) 4] o P 1-6
B P A R e s 1-6, 6-14, 6-19
= O 1] o1 T oY 6-2, 6-13, 6-20
EQ= (PArameter)iiiiiiiii e 11-4, 11-10, 11-11, 11-13, 11-21, 11-23
O =T = 0 0= (=) PP 11-24
B R A S E DD .. e 8-3
RS 1 I (o] o141 o I PP 2-5
S 1 T 2-2
B X e 15-1
EXCIl communication area poSitioN.o 6-13, 6-20
[L O PN 12-13
EXECSQL fetChed COUNTET.....ove e 6-14, 6-19

X-6 QPAC-Batch Reference Manual

EXPlCIt ProCESSING 10GIC ...ceuuniiieit et 3-17, 5-3

EXPliCit SYMDBOI @SSOCIAtION «...uuiieie e e 6-4
Extended Address Volume (EAV) ... e 10-2
=Y =TI N == 9-8
EXIErNal @rea POSILIONoueiie i e 6-13, 6-23
EXternal INterface (CICS) ... it e e e e e e e e e e e et e e e eeaen 15-1
external PAramMEter ArEaoo.iiiiii e 6-14, 6-19
EXIEINAl SUDIOULING ..o ettt et et e e e e e eaa s 9-4
F

L (oT o (o] o I PSP TUPPPTTRPPPIN 10-1
O (¥ g T 1o I o Yo L) 6-14, 6-20, 11-3
07N] = 5 PPN 12-6
N I 1 PPN 13-3
O (o] o] 1o} o 1 PP 10-7, 10-9
0N I PPN 10-4
(07 (o] o] 1 o] o PRSPPIt 2-3, 2-5
fEEADACK COAE (VS AM) oot e e e e e e e e e e et e e et eeaaaeeees 2-5
I o PP 12-20
= O BT =3 40T T o 12-10
file COMMUNICALION @IrEQAcee i e 2-3, 2-5, 12-2
file definitions (variable 16NGENS) e 2-7
file definitions fixed 1enNgth (MVS) ... et 2-1
L 3o [T ed g1 o] 1o o SO 2-3
L EEI e 1Y a1 o= 1o 1= PSSP 5-1
L1 L= =10 2 L= PSP 6-15, 6-20
file organization definitioNooii i e 2-1, 2-2
S N PSPPI 16-2
L = PSPPI 16-3
I PR 6-13, 6-20
PSPPIt 6-15, 6-20
FINAMELENGTHoeiiii et e e ettt e e e et e e e e et e e e e et e e e e eaa e e aeesaaaaees 6-17, 6-23
O] Y S 6-15, 6-20
L0150 4 T A F= 10 [6-15, 6-20
FORMEIELD ...euiceiiii ettt ettt et e e ettt e e et et e e e et et e e e e et e e e e eat e e e e esannaeeesnnneas 6-17, 6-23
@ 1 1 T SR 6-17, 6-23
PSPPI 6-15, 6-20
e IO I 2 T PSPPSRI 16-3
F T E R A S - .. ettt e et e et e et e e e et e e ettt e e ettt e e e ettn e e e eat e e e earaaaaees 16-3
I8 1L PSPPSRI 16-3
L O = PSPPSRI 16-3
O I (@ T o] 1o T3 | R SPPPRTRSPPRIN 10-7
Full dynamic @lloCationo oot e et e e e et e e 2-13
FUNGCMSG ..ooii ittt e et e e e et e e e ettt e e e e et e e e e st s e e e esta s e eeesta s aeaearaaeaees 6-14, 6-20
LU LT3 €0 o 1 o7 o o = 6-14, 6-20
FUNCHION FEIUMM MIESSAGE e it e e e e e e e et e e e e e e e e e e eenaeeeen 6-14, 6-20
FXREF (PARM OPiON) couuiiiiiii ittt ettt et e et e e e e e e e et e e e e aa e e e eaaaaeeenaans 1-8
G

L€ N (=Y U] g R et To [PP PPPR 13-7
€1 (=TT g et Lo [PP TPPPRT 13-3
€T 1 PRSPPI 6-14, 6-20
€T = =Y U g oo o =) SRS 13-2, 13-6, 13-8
€ PP 3-5
€T I o[0T} PP 5-4
(€ I 01 (0 o 1o o PP 5-1, 5-4, 13-6, 13-8
LT = I PR 3-15
LT = 181 T TP 16-3
L€ = I O I Y L ST Y T TP 14-5
GHN (DL/TFUNCEION) ottt et e e e e e e e e e et e e e e e et e e e e eaeaeanss 13-6
GHN INSTIUCTION (DL/I) et e e e e e e e e e e et e e e e e e eaees 13-10
(€1 o T e 0]I (T o T4 o] o PP 13-6, 13-8

QPAC-Batch Reference Manual X-7

GHNP INSTIUCHION (DL/T) e ettt ettt e ab e eeaans 13-10

(€1 LU I (U7 o3 (o o) 13-8
GHU INSTIUCTION (DL .. ettt ettt e et e e e aaa e e eaaans 13-10
global WOrk area POSItIONo e 6-13, 6-20
€17 I I (o] o111] o I PSP 10-9
(€] N I IR 18] a1 1o] o) I PP 13-6, 13-7
GIN NSTIUCTION (DL/I) oottt e e e e e et e et e e e e e e eaaaas 13-10
(€T T 0 o T (oo) P 13-6, 13-7, 13-8
GNP NSIFUCHION (DL/) ettt e e e e e e et e et e e e e e e e eaaas 13-10
(€0 2 IO I 013 14 U o7 1o) o S 4-7
(T 7N =1 =1 N1 I g 1= (U] 1o o ST 4-8
L1072 X @ (G 12 =] £ U T3 1] o TS 4-6
L@ 10 11,1 T 1= 1 o 4o o S 4-8
L@ = N T =3 {0 T {0 o T 4-8
L@ IS I I 1= 1 (8 o4 o o 4-7
L@ S 7N 10 =3 44 U o3 £ o T 4-6
(€T =@ 15 oo ¥ T o N 6-13, 6-20
GROUPID= (PARM OPLION) iiiiiieiiiiiie ettt e e et e e e et e e e e et e e e e et e e e e et s 1-8, 1-11
Ll I (=1 =1 0 411 (=Y o T PP 11-24
LU]I I 11 o o 4] o IS 13-8
L1 AT S (U e d o] o 01 I) T PP 13-10
H

S et e ettt eeeeeeteeeeetaeeeestaeeeestaeeeestaeeeestteeetettnteeeetaaeaeettaeeeettaaeeeataaeetttaaeeettaaeaeetnaeeearnaeeeerraaaaes 6-5
0 PPN 3-16
L 10 o PN 3-16
hexadecimal CONSTANT ... ettt et et e e e e ea e 7-2
[L RN S 7-2, 8-1, 8-3
L L 0 T= =Y o - T = PP 1-6
[LS YN Y o = 2= o X= 1T 13-5
HNAMELENGTH ..ottt e e e et e e e e et e e e e ea b e e e e eata e eeeattaeeeesnnaaaeees 6-17, 6-23
L0 E] A 2= T o = o 1= 12-9
HOSTECODEPAGE ... oottt ettt e et e e et e e e e et e e e e eaa e e e esaaeeeeannns 6-17, 6-23
[1 T PP 6-13, 6-20
oYU T o) =] =1 A 1 1= 6-13, 6-20
[1@ ST VoY o T o PSP 6-2, 6-13, 6-20
[] o N 01 e o Y 1Y I o] 1T] o IR 1-6
L I o 1N I P 6-17, 6-23
|
IDB StatemMENt ... s 12-1, 13-1, 13-6
1107 1Y] (TR 11-1, 11-15
112101 @ T = 4 (O T 11-1
LT 1S ¥ o Ao o E SR TPUPPP 8-1
IFEND (IF INSETUCHION) «.iit it e e e e e e e e e e et e e et e e et e e et e e e eeannes 8-1
[T Lo (=38 o =T [T oo T a1 { o | S 2-6
L (FEEUIN COUB) it e e e e e e e e e e e e e e e s 13-2, 13-8
L= 10 T 1) PP 12-12
gl aaT=Te [E= L L= aTE=] o= L= PPN 3-13
immediate skip 10 Channel N e 3-13
iMPlicit address asSIGNMENT ... e ettt 5-4
[T] o] [Ted) Qo] o Ye7= =11 1 s o [N T Yo | [P 3-2, 3-17, 5-1
IMPlICit SYMDOI @SSOCIAtION ... cciiii e 6-2
] o] LT3 1 537 121 oY £ PR 6-2
L Lo L= =Y o - (Y 6-13, 6-23
INdeX register INSTIUCHIONS ... e e e e e e e e e eeans 7-13
1T L=y Q=T 153 0= = PP 7-13
[T e [=3 =To B=To (o [fST-T]] s To [PP 7-13
1T (=1 I [0 ¥ o PPN 12-11
TN E=1 2= Y (o o I {1 41 PP 6-1
INPUL @rea Clear CharaCler et e e e 2-3
input file definition (EXPIICIE).....oou e e e 2-1

X-8 QPAC-Batch Reference Manual

input file definition (IMPIICIT) ..o e 2-1

INQID DIN-ANY it e et e e ettt e e e e et e e e e ettt e e e e tt e e e e ettt e e e ettt e eees bt aeeeatn e e eeatn e eeearnaaaees 2-17
LN L@ T 1S T N S UPPPTRSPPN 2-17
INQY-QIN (MQISEIIES) . ettt e et e ettt e ettt e e ettt e e e eaba e e eenba e eaees 14-6
LN ES] U PPPUTRRN 3-11
([T o = T =T ot o] o L PP PP PPN 3-11
L EST=T o =T=To |0 =T oL 13-8
internal hiper SPACe POSITIONeeiii e e e e e e 6-13, 6-20
INTEINAl SUDIOULING ... e e et e e e ean s 9-1
internal WOrk area POSITIONiii e 6-13, 6-22
internal WOrking StOrag@ @Accuuiiiiiiii et e e e e e et e e e e e et e et e e e e aenns 6-1
TN (=Y V=Y V2= | LU < 6-14, 6-20
INTERVALS (DArameter). ... oottt et e et e e et e e e e e e e e eeaan s 11-26
Y (e To {8 o34 To] o TN o F=1 o SO PP 4-2
@R oF=T =T a4 1] =1 o I PSP 11-27
] O (] o 1o o) ISP PSPPI 2-6
] O o = = 411 1= 3-16, 3-17
]] =1 =T 0 41T oL PP 2-1
] o ES3 = 1 (=T 1= o PP 2-1
1@ 5T T T | [P 6-2, 6-13, 6-20
1T 7 7N I 6-13, 6-20
[T o 1 PSSP 16-1
(ST 3 [ST OUOPPPPPRPPPIR 3-11
] S I] 7 I 1] T4 o PP 13-6
[ISRT INSIFUCTION (DL/I) ettt e e et e e et et e e e e eb e e e e eaa s 13-10
ST U A o= T =10 0= 1=) PR 11-15
(IS0 e o F=T =T 1 L= L= o PP 11-17, 11-30
=Y PRSP 6-15, 6-20
AV TN =T V2= T Y= 1 LU= 6-14, 6-20
A R (=T =10 =Y =T o TP PSPPSR 11-26
e (=T =T 1] (=] o IO PSPPSR 11-15
IWP= (PArameEter)cooeeiiieie et 11-7,11-17, 11-30
J

JCL dynamiC @llOCatioNooiiiiii et e 2-13
YL@ I o o 0 4 = 1 4 1P 6-14, 6-20
L@ I T o T8 11 14 oY= PPN 6-14, 6-20
N[O I3 7= o= 1] oY o= o o PP 2-13
L0] (=Y o T F= 1 2 L= PPN 6-14, 6-22
Job accounting €leMENT NO ... i 6-14, 6-20
JOD ACCOUNTING INTO... it et e e e 6-14, 6-20
8o o T = 1= 6-14, 6-20
B Lo o o F= 1130 [0 Yo o P 6-14, 6-20
B8 o o J=3 =T A {2 6-14, 6-20
L@ = 7 @ I I 6-14, 6-20, 6-23
YL@] = 7 @ I 1\ 6-14, 6-20, 6-23
L0 = O N P 6-14, 6-20
1= O IS] I PR 6-14, 6-20
JOBNADME ..ottt ettt e et e e ettt e et et e et e et e e et e e aaa e eaaannn 6-14, 6-20
JOBNUM Lottt e ettt e ettt e e ettt e e e et e e e et e e e et e e et it e e e et e e ean e aeanaan 6-14, 6-20
JOBPROGRNM ...ttt ettt et e e e et e e et e e e et e et et e e et e e e 6-14, 6-20
JOBSTIMEttt ettt e e ettt ettt e e ettt e e e e et e e et e e e et e e et e e e 6-14, 6-20
J 8L E=1 I == PP 11-6
K

L= PSPPSR 6-15, 6-20
) AR L Lo L O TSRS 6-15, 6-20
LNV T e o] == o [12 =Y o | PP 13-1
=20 1= e | {0 TSP 6-15, 6-20
YA T aTe T T (Yo A =Y=Yo 1o 1= o | S P 13-1
LGSV oo 1= 14 Lo o PP 6-15, 6-20
(R AT 1 U= PP 3-7

QPAC-Batch Reference Manual X-9

KEBALENG ... e e oo e e e e e n e e e e ennnnes 6-15, 6-20

K B A R E A oo s 6-15, 6-20
Ll 6-15, 6-20
N\ TR 13-1
L ettt e e e 6-15, 6-20
PRSP 13-1
e 6-15, 6-20
NG (o= T =10 =] (=1 o PP 11-4
[N 1S TP 2-2
L

A = 1= 6-16, 6-20
=Y o 1Y £ 4-7
I X PP 4-1
[N I 7= 1 (=10 411 o) AT 4-2, 5-1
107\ P 6-15, 6-20
(IO e o] o] 1o]) PP 2-6
LCT= (PARM OPHiON) ..ttt et e e e e et e e e e e e et e e et e e e et e e eaeeeaaas 1-6
1= Lo [T oo R (11 PRSP 5-4
0= 6-15, 6-20
0= NN I 6-17, 6-23
L=y Yo L TR 1= Lo I O I 2-9, 2-11
length of external parameter ValUeooo i 6-14, 6-19
1€NGEN OF FOW FEAA ... et e et e e e e e e eaa s 12-2
0 P 6-15, 6-20
1] I PR 16-3
LD B = StatemMENT ... e 3-18
I ST o B] = 1 (=] 4 1= o) SRR 3-18
[T g L= oo YU o | SO PORPRPRP 2-6
T c I oo U g} (=Tl o1 g o T = R PP 6-15, 6-20
1T L= Ii7Z o 1 o 1-7
1T = Ve =2 T 0 LY7o 1T o 1= 9-4, 9-5
LINK-"1oadmodule' INSTTUCHIONo e e anas 9-6
I = = (=Y 0 01 o | N 3-18
I o o T] = 1 1= . 1= | N 3-18
1 1N 16-3
1S3 QT 0}V oL Yo < TSP 1-6
TS ST o] (o] o g 1 = 1] o S PP 1-7
LIST/NOLIST (PARM OPtioN) .. cuu ittt et e e e e e e e e e e e e et e e e e eeaaaas 1-7
LISTL= (PARM 0P iON) ettt et e e e et e e e e e e e et e e et e et e e e e e e e enaans 3-15
LISTL= (PARM OPtiON) ettt e e e e e e et e e e e e e et e e et e e et e e ea e e et 1-7
1= = 1 7-2
I 1Y TR 16-3
1Y 10 I 1 Y T 16-3
1Y 1O 1Y T 16-3
1Y 1070 T TR 16-3
1Y 100] TR 16-3
Y 1 N O [URPPRN 16-4
Y 1T o e P URTRN 16-4
1Y N TR 16-4
IV 1 RN 16-4
LM E R A S - ... e e e e raae e 16-4
IV TR 16-4
1Y LT TP 16-4
LY TR 16-4
Y TP 16-4
LYY 72 I 0 TR 16-4
Y YT 16-4
LY Y] T] TP 16-5
Y Y 1NN LT 16-5
I Y 01 TN 16-5
YY1 Y T 16-5
YAV TR 16-5

X-10 QPAC-Batch Reference Manual

LI PP 16-5
LY S 1 1 TP 16-6
[T PP 16-6
[| PP 16-6
LI L PP 16-6
I PPN 16-6
I PP 16-6
LI N N PP 16-6
LI 1 PP 16-6
To =T I o o To [0 11 PPN 1-10
LOAD-fieldname INSITUCTIONiiii et e e e e e e 9-7
LOAD-"Toadmodule’ INSTIUCHION e e 9-7
[oYor= 1] g F=T (= To Il (=TT o 10 ot SO 2-5
(o Toz= 11 o] o I 0= 2 PSPPI 12-1
LOD B = StatEMENT ... e e 3-18
LOD BN StAtEMENT .. oe i e 3-18
[0 PP PPPRPPN 16-6
(T Yo I T a0 T4 2= (o o [PP 1-7
LOG/NOLOG (PARM OPLION) .ttt e et e e e e e et s e e e et e e e et e e e e e aaneeeeannnns 1-7
ToYe [TeeTe]) d o] I eTo] o1Y00F-T o [<00 PP 8-1
O I I N 31V @ o] 1o o | TP 1-7
T Yo o JNT 1= 11 T3 1] o PP 8-9
L O P = StatEMENT ..o e 3-18
O] o ol L) €= (=10 411 o | USSP 3-18
LOW VY AL ottt e e e e 7-2, 8-1, 8-3
LR E L et e e e e e e a e aaa 2-3, 2-6
(IS 2 (] o 1o o) ISP 2-5
I I (= T = T 4 1= (Y o U 11-24
LUD B = S atement oo e aaas 3-18
LUDBN= StatemMENt ..o e e e 3-18
LUP = S Al MmNt . .. e e e e 3-18
LUP N= Statement .. e e 3-18
M

= (o1 T (=Y ot o o [N PP PPPR 1-3
(g F= YT T o] oot X< o o o T- 1 o A 4-1
ManagemMeNnt Class (ALLOC) et e e e e e e e e e e e e 6-16, 6-20
=T o T 0 = Uy o = P 6-14, 6-20
N o N1 1 PPN 6-14, 6-20
Y L OSSP 6-14, 6-20
Maximum DIOCK IENGEN ... e 6-15, 6-19
maximum buffer length (MQSEIIES)uiiii e 14-1
MAaXiMUM COIUMNS ON SCIEEN ...euinienieee et e et e et e e et e e et e e e e e et eaeeteeaa et eaaeanennns 6-14, 6-20
Maximum NUMDBET Of [INES POI PAGE .. ceeieiii et e e e e e een s 6-15, 6-20
MaxXimum reCord IENGLN ... e 6-15, 6-22
MAXIMUM FOWS ON SCIEEIM «.cueuitieteie et et ettt e et e et e e e et e e et e e et e e et e e et e e et easaneaneanseneansensanenneeneen 6-14, 6-20
maximum segment IENGEN ... 13-1
Y I N U 6-15, 6-20
IMAXROWV .ot e et e e et e e e et e e e ettt e e e e et e e e et e e e e et e e e et e e e era s 6-14, 6-20
1= SRR 14-1, 14-5
L N SRR 2-16, 6-16, 6-20
L T=T gl oT=T o F=T o o[YT TRPPTRS 10-3
MEM DN NAME (F O A) o e et et e et e e e et e e e e e e e e ea e eeanaas 6-16, 6-21
member name for generic selection (ALLOGC) ... 6-16, 6-21
=T 0] o T=T 5 4P 0 41 PN 1-10
MEMDIR CHDT ..ottt e e e e e ettt e e e e et e e e e et e e e ea bt e e e eesa s eeeestnaeaaens 6-16, 6-20
MEMDIR CHDT (PD S . ituiiiiiiiie ettt ettt e et e et e e et e e et e e e e st e e e e et e e e eaaaaeeeeean 10-6
MEMDIR CRDT .ottt et et et e e ettt e e e et e e e e et e e e e et e e e eeab e eeeeabaaaaaens 6-16, 6-20
MEMDIRCRDT (P S) . ittt ettt ettt e et e e e e e e e e et e e e e et e e e e e st e e eeat e eeeeataaaeaeees 10-6
L1 PSSR 6-16, 6-20
MEMDIRINIT (PD S) .. itittieiiitiit ettt ettt e ettt e e e et e e et et e e e e et e e e eeat s e e e eatnaeaeestn s eeeestnaeeessnnaeeenes 10-6
MEMDIRMM L. e ettt e e et e e e e et e e e e ett e e e e e et s e e eeatn s eeeestn s eeeestnaeeeernaaaees 6-16, 6-20
MEMDIRMM (PD S) ... iiiitiieeiiit ettt ettt e ettt e e e et e e e e ettt e e e ettt e e e eata s e e e eatn e eeestaaeeestanseeeesnnaeaeees 10-6

QPAC-Batch Reference Manual X-11

MEMDIRSIZE ... e et e e e e e 6-16, 6-20

L s I {1 T 10-6
MEMDIRTIME ...t e e e e et e e e e e e e e e e eanes 6-16, 6-20
L L I Y S TS 10-6
MEMDIRUSERot e et e e e e et e e e e e anas 6-16, 6-21
MEMDIRUSER (P S) . iiiiiiiiiiii ettt e e e e e e et e et e e e e e et e e et e e et e e et e e e eeeanas 10-6
MEMDIRVV .ottt e e e e e e e e e e e e e e e aans 6-16, 6-21
MEMDIRVY (P S) ..ottt e et e e e et e e e e e e e e e e et e e et e e et e e e e eeanns 10-6
MEMIN M e e et 2-16, 6-16, 6-21
message queue NAME (MQSEIIES)uu ittt e e et e e e e et e e e e et e e e eananns 14-1
N 6-13, 6-21
MINUEE OF STart tiM e ..o e e e e e e e e e 6-13, 6-21
N Lt — e raaeas 2-16, 6-16, 6-21
LN i (o] o1 1o) I PR 10-3
A Y TR 14-1
(agTeTol1iTer= TileT o I (L O R PP 6-16, 6-20
100 Yo 111 2 7-2,7-6
0 NN N PP 6-13, 6-21
MONth Of SYStEM date e 6-13, 6-21
MQOO_BROWSE (MQSEIES) ..vuiiiiiiiiieteiie e et e e ettt e et e e et e e e et e e e et e e e e et e e e e et e e e e et e eeeenanns 14-5
MQOO_INPUT_AS_Q_DEF (MQSEIES) . .uuitiiiiiieeeiiiiee et eies e ettt e et e e et s e e et e e e et e e e eataeaeanna s 14-5
MQOO_OUTPUT (MQSEFIES) evvuniitiiiiiietiiie e ettt ettt s e et e e e et s e e et e e e e et e e e e et e e e e et e e e eetaaeeeenanas 14-5
LY L@ I T3 €= 11 2 11T o) N 14-1
LY L ST =T 14-1
MQSeries character attribute areaoooviiiiiii 6-17, 6-21
MQSeries character attribute length ... 6-17, 6-21
MQSENES ClOSE OPLIONS ...ovuuiiiiiii e e e e e aaaans 6-17, 6-21
MQ SIS COMMANG tOXE .o ii it 6-17, 6-21
MQSeries COMPIELION COUEuiiiiiii e e s 6-17, 6-21
MQSeries conNection NANAIEEcouiiniiiii e 6-17, 6-21
MQSErIEs COrrelation id...........iiiiiiii e 6-17, 6-21
MQSeries current message 1eNgth ... 6-17, 6-21
MQSeries int attribULe 1-T6ooviiiii e 6-17, 6-21
MQSeries int attribute arrayoooooii e 6-17, 6-21
MQSeries int attribute COUNTEI..... ... 6-17, 6-21
MQSENES MANAGET NAIME ...uuiiiiii i eeeiee et e e e e et e e e ettt e e e ettt e e eesa e aeesaa e eeesan e eeesannseeennnns 6-17, 6-21
MQSeries maximum buffer length ... 6-17, 6-21
MQSENES MESSAGE I ... iiiiiiiiiiiii e e e e e e e et e e e e et e e e e et e e e eana s e e easan e eeennns 6-17, 6-21
MQSeries 0bJECt NANAIET..........coueiiiie e e e e e e aa e e eanans 6-17, 6-21
MQSENIES OPEN OPHIONS ...e e 6-17, 6-21
MQSEMES QUEUE NAIME ...iiitiieeiii ettt e e et e et e e e e et e e e ettt e e e eat e e e eesan s e e eesan e eeeeaanaeeesnnnaeeennnn 6-17, 6-21
MQSEINES FEASON COUB....uu ittt ettt e e e e e e e e e e e e e e et e et e e s e raneeans 6-17, 6-21
MQSEIES FEASON TEXE ...iviiiiiiii e et e e e e e e e e e e eanns 6-17, 6-21
MQSENES SEIECION T=TB ...ieniiiiiii e e e et e e e e e e eanns 6-18, 6-21
[@S T=T oY = 1= Yo (o T =Y - | 6-17, 6-21
MQ SIS SEIECION COUNTET .. e oo, 6-17, 6-21
ST C R o =T =10 =1 1=) PP 11-28, 11-31
] TR 13-1
MT (file OrganizZation) ... oo et e et e e et e e e e 2-2, 2-7
Y] T o = {0 o 7-2,7-6
MVS library (file definition) i e e 10-3
N

NN] 2-16, 6-16, 6-21
N e oY= T =T 1= 1= o PP 11-4, 11-13, 11-22
N T =T 0 0 T=Y (=) 11-10, 11-11, 11-23
NESEING OF DO JOOPS .. oenieiiit ettt e et e ettt e e e et e e e e aaa s 8-9
NESEING Of IF CONAITIONS ...ttt aa s 8-6
NESHING Of SUDIOULINGES ... et 9-1
7Y d 0 P 0 0[PPSR 6-14, 6-21
L I N 1 P 6-14, 6-21
NO reset t0 eMPLY StAte (VS AM) ..o e e e e e e e e e 2-5
NOABEND (PArameter) ... ccou it et e e e e e e e e et e e e e e e eeeas 11-8, 11-28

X-12 QPAC-Batch Reference Manual

NOCOPYL/COPYL (PARM OPLION).. .o 1-6

NODUPREGQC (PArameter)c.uuu ittt e e e et e s 11-13, 11-28
N[= (o] o X1 To] o PSP TUPPPPTRPPPIN 10-3
N[O 1€ = (o] o] (1o} o) F PP TUPPPTTRPPPIN 13-2
N[O 11 (o] o111] o F PSSP UPPPTTRPPIN 13-2
NOLIST/LIST (PARM OPLION) ..ttt e ettt e e e e e e 1-7
NOLOG/LOG (PARM OPHION) ..ttt ettt e e e e e e e e 1-7
NOLOGTIT (PARM OPHION) 1.ttt ettt e ettt e e e e e e e e e bbb 1-7
N @IS S (@] o] 1 o] o) IR PP PPTRPPTT 2-5
NOLSR/LSR (PARM OPtION). ..ttt ettt e e e e e e ab e 1-8
NOPLIST (PARM OPLION) ettt ettt e e e ettt et e e e e e e e e e ab b e 1-7
NOPLIST=SAVE (PARM OPtioN) ..t e e e e e e e et e e e e e e e e e eeanna e aeeas 1-7
NOPRINT (PArameEter) ceeiiiieeiiiie ettt e et e e et et e e e e et e e e ettt s e eeean s eeeennnaaaees 11-21
NOPRINT (PArameEter). ... ocoeeii ettt e e e e et e e e e et e e e e et neeeeabnaeaees 11-24
N T P 4-1
NOIMaAl dISP (ALLOC) ..ottt e ettt e e e et e e e e et e e e eeaaaeaeees 6-16, 6-21
NORMAL StatemMeENt. ... oo e e e e e e e e e e e e eneene 4-2, 5-1
NOSTAB/STAB (PARM OPLION) ...ttt e ettt e e e e e e e e ebab s 1-8
[SO PPPPPPTTTR 8-3
NOT FOUNT CONAITION ...ttt ettt e e e e e eeaaas 3-7
NOXREF/XREF (PARM OPLION) ...ttt ettt e e e e e e ee bt a e e e e e e e eeeaaanns 6-24
NOXREF/XREF (PARM OPHION). .ttt e e e ettt e e e e e eeeaaa s 1-8
N LRSI (e 1 1o o 1 U PR 2-5
(N L] I o7] o Lo 11T o WA PP PPPRPI 12-5
number of initial records (FCA) e e 6-16, 6-20
NUMDBET OF rECOTAS (FCA) ..t e e et e e e et e e e eaans 6-16, 6-20
NUMERIC ...t e et e ettt et e e e e et e aete e e e e e e e eeeaastnn e e e aeeeeeeestnnnaaeeaeeeennns 8-1, 8-3
o

ODB StatemMeNt 12-11, 13-1, 13-6
ODB SateMENT ... ettt 12-1
0g-SPN (file OrganizZation)........oouu i e 2-7
0g-UND (file OrganizZation)ooouui e et 2-7
0g-VAR (file OrganiZation).... ..o 2-7
L@ T] IS I (@ o] T o ISR 10-9
OLDTOYOUNG (OPtiON) ... iieeeeeeeeiiieee ettt e e e e e e e e et eeta e e e e e e e e eeetat e e e e e aeeeennennn e aaaaeas 10-9
OPEN L.t ettt e e et e e aeeeaeean 3-3
OPEN (MQISEIIES) ..eeeeeittiiei ettt ettt ettt e e e e ettt e e e e e et e e e et e e e 14-1
(O] = B @ I €Y (@ IS 1= = PP 14-4
OPERID ...ttt ettt e et e e e e e e e ennraa 6-14, 6-21
OPF (Para@meter) ...ouu ittt e e et e e e 11-10, 11-12
(O o S =1 (=10 0= o | S S PUPPP 2-1
OPFN (PArameter) ..o et ettt e e e et e aeaaas 11-23
(O] o o IS =1 (=T 0 0 =T o | PSP 2-1
L0 =0 15 T T 1 o U 6-2, 6-13, 6-21
OPHION BWD (ALLOC). .. ettt ettt oottt e e e e e et e et e e e e e e e e eennenn e e e e aeeeennnna 6-16, 6-19
FoT o) AT o TN BT 1 = B I 1 1 T 6-16, 6-19
(@] o) i) o - J ORI 2-3
options (general definitioNS)i i e 2-3
options (print file definitioNS)o 2-6
options (tape file definitioNS) e 2-4
options (VSAM file definitionNs)coouuiiiiiii e 2-5
1O] USRS 8-3, 8-4, 8-6
L@ T SRR 12-2
(o] fo (=T gl o) Vol = TV] = ST TTPPPTTPPP 12-2
L@ 1S U o =T =T 0 =Y 1= ISP 11-16
(OIS U L (o= T =10 1= (=]) PP 11-17, 11-30
OULPUL @re@ Clear CRAIACTEI i ettt et e e e 2-3
output file definition (EXPIICIE)ue i e 2-1
output file definition (IMPHCIt) ... oo e e e e e e e e e 2-1
L@ A AT o F= = T 411 =Y o PP 11-16
(O X AT o F=T =T 0 0 1= (] o 11-8, 11-18, 11-30

QPAC-Batch Reference Manual X-13

P

[0= Tod (Yo I (o] o 4 - | PP 7-6
e o= o =Y o 7-1
e O = I PP 8-1, 8-3
0= o =T oo 10 [o1 1= o 6-15, 6-21
= o =T 1= 0 T 14 o 1P 1-6
PARM 0ption defaults ..o e e e eea e 1-8
PARM OPtIONS ..ottt e et e e e e e e e e e aaae 1-10, 1-11, 6-24, 13-4
LN 1Y S 2= 1 (=Y 0 = o | 1-6
PARM=MAIN (PARM OPtiON) ..ceiiiiiiiiii ettt et e e et e e e et e e e et e e e e e et eeeearanans 1-6
N S] = 1 =] T T o 7-14
1= Lo aT=To o F= = ==Y 2-2
PASSWOIA (VS AM) L.ttt et e e et e e e e e e e e e e e e et e e e e e a e aa s 2-5
PASSWORD= (PARM OPLION) ittt e et e et e e e et e e e e et e e e e aan s 1-8, 1-11
o= 4 L= o 0 = (] 1 T PPN 10-3
O PSPPI 6-15, 6-21, 13-5
O = o PP 13-1, 13-5
O] O PN 6-15, 6-21
D RS 1 Lo 1= 1T T (T o) PR 10-3
PDS (file Organization)i oo e 2-2, 2-7
PDSE (file definition) oo et 10-3
PDSE (file OrganizZation)iieiiiiii ettt et 2-2
e I =T oTo] o B (0 o3 U <Y 2-4, 6-10
o = o T = U 41 P 12-3
I N L (o] o 4 o o) P 12-3
e N N e €N 1Y IO o} i) TSP 1-8
T T 6-10
e I T @ (o] o) 4T o) P 2-4
e I I N 1Y B @] 1o T3) P 1-7
e PP 6-5
T PP 6-5
[OToT 11 4= o 1= Lo PP 6-11
PORTNUMBER ...ttt e e ettt e e e ettt e e e e et e e e eeat s e eeeatn s eeeestn s eeeestnaaaeenen 6-17, 6-23
PORTNUMNU L.t e e e e e e e ettt e e e e et e e e e eatteeeeata s eeeeatn s aeeeasnaaaeaes 6-17, 6-23
POSIHION SYMDOIS ... ettt e et e e e e e aba s 6-2
L O P 16-6
PR (file 0rganization)coiiiiiiii e 2-2, 2-7
prepare for SYMDOI PrefiXoii et 12-3
L A e @ = S I (o o] 1o 4 | U 12-3, 12-6
PRGINAME ...t e ettt e e et e e e et e e e et e e et e et e e eaa e eanann 6-14, 6-21
PriMary SPACE (ALLOC) ittt 6-16, 6-21
PRINT (file 0rganization) ..o et 2-2, 2-7
0L 0 71 11-19
oL 88 71130 L= T 140 o 2-2
(o113 €= oo] o I PRSPPI 11-19
[OL L Ao Ty (= == LSRR 11-20
e | I (O TP 11-1, 11-19
e LN I L TP 11-1, 11-19
e LN I PP 11-1, 11-20
e 1 T RSP 2-16, 6-16, 6-21
processing limit definitioNS e 3-18
(o] foTo=T XS]] o o 1= To [UT=Tq ot TP 4-3
ol reTo] =Y o (I aT=10 1= T TP PPPRPPTT 6-14, 6-21
PrOGIAMIMEIS NMAIMIEiiti ittt ettt et e e ettt e et ettt et et ettt et et e et ea e e et e e eaa e e e an e e ea e e et 6-14, 6-20
P O B ..t e e e e e e e e e e e et aa e aaaa 6-15, 6-21, 13-5
AT e (o o] 1 o o | PP 2-5
P U T i ettt e e e e ee et e ee et e e et it e eee it e e ettt e e et aara 3-6
[O T 013 (U Lo (] o 5-1, 13-6, 13-8
P U T A i ettt et e e e et e e e et e e et ta e e eet— e ettt e e et e e et e ettt e eeat e earnas 3-7
U N T] (U o £ T o TP 12-10, 13-2, 13-6, 13-8
I PP 3-7
U I B o 1= U e 1o) o TP 12-11, 13-6, 13-9

X-14 QPAC-Batch Reference Manual

PUT P CH e et e e e e e e e e e e e e 3-15
PUT-QIN (MQISEIIES) ettt ettt e ettt e ettt e e ettt e e e eaba e e e enba e aeees 14-5
Q

QUBUFFLENG ... ittt ettt e e e e e e e et e e e e e e e e e aeatat e e e e eeeeeatstanaeaeeeeeeesnnnns 6-17, 6-21
QL CHAR AT T AR E A i ettt e e e e e ettt et e e e e e e e ees bt e e e e e e e eeatn i aaaeeeeeeeanrnas 6-17, 6-21
Q.CHARATTLENG ..ottt et e e e e e e e e e e e e e aaaaas 6-17, 6-21
(O 0] 0 1S =10] = L UUP PP SUPPUPRPRIN 6-17, 6-21
Q O D T E X T ettt ettt e e e et e e e e e e e e e e et e aeaaaeaaaa 6-17, 6-21
Q.COMP CODEttt e e e et e e e e e e e e e e e e aaaaa 6-17, 6-21
Q.CORRELID ... e et a e e 6-17, 6-21
Q.DATALENG e et 6-17, 6-21
(@ 070 111\ P USTPR R UPRPPPRIN 6-17, 6-21
(O [] PP PRUPPR 6-17, 6-21
QLN T AT TARRAY ittt ettt e e et ettt e e e e e e e e ettt e e e eeeeeeessasa e e aeeeeeeessrnnnan 6-17, 6-21
L@V 17N I 1\ T URPPPRRPPPTIN 6-17, 6-21
L@V 17N I TR USPPPRUPPRTIN 6-17, 6-21
Q.MGRNAME ...ttt et e e e et e ettt e e e e e e e e e et e e e aeeeeata— e aeaaaaeaaraa, 6-17, 6-21
QUIMSGID ... e e 6-17, 6-21
Q0]] =1 N0 = LU RRRRTRUPRPRIN 6-17, 6-21
QLANAME e 6-17, 6-21
QL REASON . ..o e 6-17, 6-21
Q. REAS ONT EXT ...ttt et eanaa 6-17, 6-21
(@ ST = 0 N I PRSP PR PPPPPPPPINt 6-17, 6-21
Q.S ELE CT ORN .. ittt e e e e e e e e e et e e e e e e e et aaaaaaaat 6-18, 6-21
QL SE LE C T ORS L.t e e e et a e e e 6-17, 6-21
QILIBDEF - ...ttt e e e e e e e e e e e e e e 16-7
QMOD= (PARM OPLION) ©uuiiiiiiiieieeeteee et e e e e e et eaab e e eaeaaeeeeaes 1-7
QNBUFFLENG (MQSEIES) ... cciiiiiiiiiiiee ettt ettt e e e et e e e e e e e e e e e e e eaeee eeeeeeensnnnnns 14-1
QNCHARATTAREA (MQSEIES)vvtiiiiie ettt e e 14-6
QNCHARATTLENG (MQSEIIES)uvvuiieieeeiee ettt et e et e e e e e e e 14-6
QNCLOSEOPT (MQSEIES). .. ciiieeiiiiteee et et e e e et e e e e e e e e e e e e e e e e 14-7
QNCMDTEXT (MQSEIIES) ... ettt e et e et e e e e e e e e e e e e e e eeeeanaaas 14-2, 14-8
QNCOMPCODE (MQSEIIES) .. .ceieiiiiee ettt 14-2, 14-5, 14-6
QNDATALENG (MQSEIES) ... ittt ettt e e e e e e e e 14-5, 14-8
QNGMO_OPTIONS (MQSEIES) ..eeeetuiiieieeeeeeeeieete e et e e e ettt e e e e e e e e e e et e e e e e e e e eeesst e e e aeeeeeessrnsnaaeeeeas 14-5
QNINTATTARRAY (MQSEIES) .eieeetuiiiiieieeee ettt e e e ettt e e e e e e e et e e ettt e e e e e e ee s bs b e e e e e e eeeeesraanaaeeeeas 14-6
QNINTATTONT (MQSEIES) e eiiieeiiiiie it e et e ettt e e e e e e e e e e ettt e e e e e e eeess s e e e e e e eeeesessanaeeeaeas 14-6
QNINTATTN (MQSEIIES) wvvtuiiieeeietiieetie ettt e e ettt e e s e e e e et e e e et e e e e e e e eeesssaa e e aeeeeeeeestnnneeaeas 14-6
L@ U PSPPPPRPRIN 6-15, 6-21
QNI Lo e e e e e ————— 14-1
QNMGRNAME (MQSEIES) ... ittt et et e e e e e e e e e e e e e e e e eaaaas 14-1, 14-4
QNOPENOPT (MQSEIES). .. ettt e e e e e e e e e e e e e e e eaaaas 14-3, 14-4
QNQANAME (MQSEIES) ...uueeieeeeeeeeee e et e e e e e e e e e e e e e e eaaaas 14-1, 14-4
QNREASON (MQSEIES) ..ttt e 14-2, 14-5, 14-8
QNREASONTEXT (MQSEIES) . .coeeeiiiteeee et 14-2, 14-5, 14-8
QNSELCNT (IMQSEIES) cvtttuiieieeetee ettt e ettt e e e e ettt e e e e e e e e e e e s b e e e e e e e e e e saba e e s e e eaeeeeesaanes 14-6
QNSELECTORN (MQSEIIES) ... ieeitieteeiti ettt ettt e et e e e e enaaas 14-6
QNSELECTORS (MQSEIES) ... eieiiieiitiiiee i e ettt e e e e e e e e e e e e e e e e et e e e e e e e e e e aeaaaa s 14-6
QP ACBDB2oet e e e e e e e e e e et aaaaaeae e 12-4
QP ACBMP ... e e e aaaaaaaa 13-1,13-5
QP ACDLL. .o e e e e e et aaaaaaan 13-1,13-5
QPACPGM (P S) ..ttt et et e e e e 1-4
QPACUSER (EXIt MOAUIE) ...ttt e e et e e et e e e e eaa s 1-11
QPGMS (PARM OPHON) ...ttt ettt e e 1-7
QUEUE TEEIM (F O A ittt ettt et e ettt e e e et e e e e et e e e e et e e e eaannes 6-15, 6-20
queue manager NAME (MQSEIIES)uuiiiiiii et e e e et e e et e e e et s 14-1
Lo [T O =T F= T g ST (O S 6-15, 6-21
R

N (T T = T 111 (=] o IR USSP 11-14

QPAC-Batch Reference Manual X-15

RV (o F 1= T (=] (] o TP UPPPTPRUPPIN 11-14

N O U1 Y o o PPN 6-14, 6-21
RACFUSER ...ttt ettt e e e ettt e e e ettt e e e e eat e e e e ettt e e e esta s eeeeata s aeeeatnaeeeasnnaaaeees 6-14, 6-21
= PPN 6-15, 6-21
R C et e e e e e e e et e e e e — e e ettt e eeeta e e et e eeaa e e ern e aannnnn 6-15, 6-21
RO (=] (VT4 g T oTo Yo 1= TP 6-14, 6-21, 9-6
RC=YES (OPLION) .o 2-5,10-10, 12-3, 12-7, 13-2, 14-2
o PN 6-15, 6-21
PN 6-15, 6-21
0V PN 6-15, 6-22
I3] 3-9
0 1P 3-10
Y I PP 3-9
read DaCKWardS (VSAM) ..o e e ettt e et e e e et e e e et e e e e eaa s 2-5
[LCT= Lo I oo YU T 01 (=T gl 0 6-14, 6-20
((ST=To I eTo U] o] (T g NN PP 6-15, 6-22
READGEoe ittt ettt et e e e e e e e e e et e e et e e et e e et e e e et aaaaas 3-9
READUPP ...t ettt e et e e e e e e e ea— e e e e e aear e tar e aaaa. 3-10
LYoo AV T oTo 10 g1 (Y N = 6-15, 6-22
Yo=Y AV T I 11 o 7-3
L = O PP 6-16, 6-22
reCOrd ar€a POSIHION DS r, DB luuuuiiu it eiii ettt e e e et e e e e e e e et e e e e e et e e eenaeeannns 6-13,6-19
[reYoToT o Ir=T = F= T oTo 1=y |0] o N = o B 6-13, 6-20
FECOrd ar€a POSIHION O P F [71] teeiuuiiiiiiit ettt et e e et e et e et e et e e et e e e e e et e e een e eennns 6-13, 6-21
FeCOrd ar€a POSITION SP O ciuu ittt ettt et et e e e e e e e e e e e e e e e e e eenns 6-13, 6-22
FECOrd ar€a POSIHION T DI, T S I uiuiiu et ettt ettt e e e e e e e e e e e e en e e e e e e e e e e e et e eaaeneenns 6-13, 6-22
reCOrd ar€a POSITION UPTE [11] ciuuiiuieii it eii ettt et e e e et e e e e e et e e e e e e e e e e e e e e et e et eenaeaneenns 6-13, 6-22
C=Toto] o IeTo T U T o] (=T gl =0 A 6-15, 6-21
FECOIrd fOrMAt (ALLOC) .. e it e e e e e e e e et e e et e e e eenn s 6-16, 6-22
FeCOrd 18NN ..o 2-1, 2-3, 2-6, 2-8, 2-11, 2-12
=Yolo] o =T o L4 T (L O AN TP 6-15, 6-20
record [€Ngth (FCA/LIBR) ...ttt e e e e e e e e e e e e e et e e et e e eeanns 6-20
record level Shared (VSAM) ... ettt e s 2-5
(=Y =Y (o] T oo o L £ [o 8-1, 8-3
relative byte address (FCA) ..o e 6-15, 6-21
relative record NUMDBbEr (FCA) ... e 6-15, 6-22
release SPACE (ALLOC) ettt 6-16, 6-22
L 1Y =] TP 16-7
=1 o I I 3T o 1o o) PN 13-6, 13-8
REPL iNSTrUCHION (DL/T) ouniiiiie et e e e e e e e e e e e et e e et e e e e eaaeaes 13-10
reserved SYMDOI MAMIES ... ettt e e e e e e e e e e e e e et e et e et e et aennas 6-1, 6-2
] PPN 6-17, 6-23
refurn COde. ..o 4-8, 6-14, 6-21, 9-6, 11-28, 12-2, 13-2, 13-3, 13-6, 13-8
FEEUIN COAE (D) .. ittt e e e e e e et e e e eaa e e eennns 13-2, 13-3
=100 g g eTo Lo L= o O PP 6-15, 6-21
=100 g g eToTo F= N (T O | PR 12-7
FEIUIN COAE (VS AM) i e et e ettt ettt e e et e e e et e e e e ab e e e eaaaeeas 2-5
return code POSITION 1 (FCA) i et 6-15, 6-21
return code POSIION 2 (FCA) o e s 6-15, 6-21
L T N I = 3-11
R ettt e et e e e e et e e e e ata e e e eet e et et e e eett e e eeataaaaataaaaaes 2-16, 6-15, 6-22
I (o] o] 1o o I PP 2-3, 2-6
(I (o F= T = 10 11=] (=] o PSP 11-4, 11-11, 11-23, 11-32
R I (=T =10 1= (] o IS 11-30
LIS (o] o] 0] o PR 2-5
L PPN 2-16, 6-16, 6-22
o]l oF=Tod [(Y (@ IS T=T 4 1= PP 14-7
0T o AT =Yoo 01T o 1 13-6, 13-8
(e Tol A= =To o o =T o1 B =T 4TS PSPPI 13-1
10 1TSS 12-2, 12-4, 12-8
01O OPS PR 12-11
0NV =T o 1 d o PPN 12-7
O XA I 12-2

X-16 QPAC-Batch Reference Manual

LI 1 T PPN 2-2
1 SR 6-15, 6-22
ISP 6-15, 6-22
L I LRSS 13-1
AT SRR UPPR 3-11
S

SADDRLENGTH ...t e e e e et e e et e e et e e et a et aaaann 6-17, 6-23
3 A 1Y PP 2-1
SAM (file OrganizZation)o.u. i e 2-2, 2-7
ST 072N 1 (TSP 11-1, 11-21
ST 072 V1 TSR 11-1, 11-21
ST 07 VA TP 11-1, 11-23
ST N PSP 2-2
SCAT (file defiNItiON) ...oeee i e et e e e e e e e e e eaaas 10-7
SCAT (file OrganiZation)ciiiiii et e et e e e e e e e e e et e et e e e e et 2-2
ST N I PR 6-16, 6-22
ST O I TSP SRPRN 2-16, 6-16, 6-22
T4 1 PP 6-15, 6-22
T] PP PPPP 12-1
SD (file Organization)coouuuii i e 2-2, 2-7
T] ST PO UPPPPTR PPN 2-16, 6-16, 6-22
S SN Lt e e e e e e e e e e e e e et a et aaaaa 6-16, 6-22
1 = 010] 1 PN 6-13, 6-22
SecoNd Of StArt tIMe ... et 6-13, 6-22
SecoNdary SPACE (ALLOC). ... et et 6-16, 6-22
T 5] PPN 2-16, 6-16, 6-22
T = I T 6-15, 6-22
EST =0 1= S 13-2
SEgMENT BN ..o e 13-4, 13-5
SEOMENT LBV .. e e e 13-4
1Yo o T=T o = o 0O 13-4
SE GIN M Lot e e e e a— e e a e e e a e et et aaat e e aa e aaraa 6-15, 6-22
T I O PP 16-7
selected Catalog NAMEo e 6-16, 6-22
selected column NAMES (SQIL)uu it e e et e e e et e e e et e e e et e e e eannns 12-1
selected generic dataset NAME ... 6-16, 6-22
EST=Y (=Y oa = To JT =Yoo 411 o) £ PN 13-2
Y=Y 001t eTo] [0} o PSP 12-9
Y=Y aTo I eTo U] o] (Y 72N = PP 6-15, 6-22
7T aTo [T Te IR 1= o N PP 7-3
ST ET LAY T T =Y | = 0 | P 13-6, 13-7
] O 10 o PSPPSRIt 11-1, 11-24
sequential disk file definitioN e 2-2
sequential file defiNition e 2-2
SERVERADDRce ittt ettt e et e et e e ettt e e et e et e et aaan e aanann 6-17, 6-23
SERVERNADME ...ttt e e ettt e e e e et e e e e et e e e easa e e e eaaa e e e eann e eeannns 6-17, 6-23
SET arithmetic INSTrUCHION e e 7-6
T = I = o 1 1= E o4 oY o P 7-9
SEE BQUAI KBY e e 3-7, 13-4, 13-8
Y= o =T a1 o o = 3-7, 13-4, 13-6
SET high-level-format iNStruCtion...... ... e 7-3
] = T 1= 8 o4 o o P 7-2
SET transter INSTTUCTION ... e e e e e e e aae e es 7-5, 7-7
T I PP 3-7
SETEK INSIIUCLION .ooiieicii e e e 13-1, 13-2, 13-3, 13-4, 13-8
T I T <P 3-7
SETGK INSIIUCLION et 13-1, 13-2, 13-3, 13-4, 13-5, 13-
ST = I 111 = PSPPI 11-1, 11-26
ST = I ST T U 16-7
SET-QIN (MQISEIIES) ..etuiiiiiii ettt et ettt e ettt e e et ab e e et e e e et et e e e e et s 14-6
ES] 1 0] o] (= oo s T 114 o s P 8-5

QPAC-Batch Reference Manual X-17

S G B (153 (V7 ([0 T 3-13
5] G N O 1 013 1 Vo3 (o o [T 3-13
5 G B 1013 VLo 1o o [T 3-13
S G A 1413 1 Vo3 (o] o [T 3-13
5] @2 T 1= (Vo34 o o 3-13
5] N T 1= (Vo3 1o o 3-13
5] NG AT 1= (Vo3 1o o 3-13
S S TR 1= (Vo3 1o o 3-13
S ST 1= (Vo3 1o o 3-13
S S T 1= (Vo3 1o o 3-13
S L€ T (o153 (VL1 ([0 o DT 3-13
1SS I (o153 (VL7 ([0 o F TP 3-13
1] 1 T 2-2
SLOG (file definitioN).....couui i 10-9
SLOG (file OrganizZation)......cooouui i ettt e e e e aees 2-2
SINAME LEN G T H oot eee e e e e e e e e e e e e e eaaes 6-17, 6-23
T\ O P 11-1, 11-27
RS 1 @ 15 oV 1 o 6-13, 6-22
ST 3 I (O TP 11-1, 11-28
ST I (O TP 11-1, 11-30
S0 3 N TP 11-1, 11-32
S ot I 0 153 (VL1 {0 o DT 3-13
Y oA [o153 (VL1 (o) o DT 3-13
Y S T [53 (VL1 (o) o DT 3-13
5] Y O T 7-2, 8-1, 8-3
SPN (file 0rganization)o oo e 2-7, 2-12
SQ (file OrganiZAtioN)oee e e e e e et e a s 2-2,2-7
L@ T I 070 1011 4= T o T 12-14
SQL return COAE (F O A) .o ettt e e e e e e e e et e e e e e e 6-15, 6-22
L O I o 1A =Y g Vo I L O TR 6-15, 6-22
SQL table NAME (FCA) ... et e e e e et eeeaaas 6-15, 6-22
SQLCODE ..o 6-15, 6-22, 12-2, 12-7
S R I (o1 1= 10 1 T=1 (] o I PP 11-28, 11-30, 11-32
RSS2 o T 6-15, 6-22
RSS2 6-15, 6-22
ST = €L (o]) (e o) PSP 13-2
STAB/NOSTAB (PARM OPLION) ..ttt e et e e et e e e et e e e e et e e e e esa e e eeestnaaaaes 1-8
SEANAANA At ..o e e e 11-6
standard Variable MOAE..... ... e e 2-7
Start AN ENA MBS SAGEce i et a e 1-7
£ =1 A0 {1 1 = 6-13, 6-22
SN AN I (o] o] 1o] o) TP 13-2
L] = TSy Lo (0 13-2
£y =) (U= 10 Lo 11 {0 o 1P 8-1
STAtUS ISP (ALLOC) .. i ittt e e 6-16, 6-22
ST E PN AME ..o, 6-14, 6-22
S Y I = 1= 10 0= (=) PSP 11-15
SN N I (o F= 1= T4 1] (T o TR PSP 11-17
STOrage Class (ALLOC) ... ittt e et 6-16, 6-22
LS 10 747 3-14
STOW identification (FCA) ..o e e e e e e e e e e e e et e e e eaa s 6-16, 6-22
STOW statistic modification (FCA) ... e 6-16, 6-22
STOW statistic USEr id (FCA) c.u e e e e e e e e ees 6-16, 6-22
STOW statistic version (FCA) ... e e 6-16, 6-22
ST OWID e 6-16, 6-22
ST O MM e 3-14, 6-16, 6-22
STOWMM (PDS) ...ttt ettt et e e e e e e e e et e e e et e e e et eeeeae e e e eaaa s 10-5
ST OWUSER oottt ettt e e et e e et e e et e e e eaees 3-14, 6-16, 6-22
SO U ST = R (= 1S) 10-5
ST IO AT AT A AV 3-14, 6-16, 6-22
SR IO YAV o 1 1 T 10-5
STREAMNMS= (SYSIEM I0GQET) . ittt e e e e e e e e e e e e e et e e et e e e e eaaeaes 10-9
LY (U (0 (=Y (== 1-7

X-18 QPAC-Batch Reference Manual

STRUTEST (PARM OPHION) ... e e e e e e eenees 1-7

SUS (PAramMELEI) ... et 11-26, 11-30
SUBEND StatemMEnto 9-1
SUBEXEC (PARM OPLION) ...ttt e e e e e e et s e e e et e e e e et e e e e et e eeesnnns 9-10
SUBINIT (PARM OPLION) ettt e et e e e et e e e e et e e e e et e e e e et e e e e et e eeeeannnnns 9-8
SUB-NAME StAtEMENT. ...t e e 9-1
SUBQUIT INSETUCHION «.veititii e ettt e e et et e e e e e e e e e e et e et e et eeanns 9-2
SUBREAK INSIIUGCHION ..ttt et e et e e e e e e e e et et e et eeanns 9-2
101 o] (o 1V {1 U= TP 9-8
10| o] Fo U {1 =T RN 9-1, 94
SUBTERM (PARM OPtiON) c.uui ittt e e e e e e e e e e e e e e e e e e eaass 9-11
ESTU] o) 4 = (1 1o o P 7-2,7-6
AV O (o= 1 =12 1= (=T) PPN 11-18
S 1Y €= T =10 =1 =T) PSPPSR 11-27
N 1Y e (o F= L= T 1 1=1 (=T) I USRS 11-27
RS 011 =1 T 6-17, 6-23
SYMDBOL AEfiNItIONS ...t ettt 6-1
S AN QN a1V IO o) £ o o) P 1-7
Sy L= =T g F=1 V=TI S PRPPRRPN 1-7
L)Y =3 Qo] =T o] PRPRN 1-3
SY SN AME .o e 6-14, 6-22, 6-23
N AS10 1 U I o= = T a1 (= o PP 11-15
R 51O 10 I] = 1= 2-6
L3V £ (=1 0 e =1 (= T 6-13, 6-19
system date EURO fOrmMatooiiniiiii e e e e e e e e e e eaa e 6-13, 6-19
system date ISO StANAArdoooeiiiiii e 6-13, 6-20
system date US fOrmat ... e e 6-13, 6-22
SYSTEM NAME | SY Sl .. ittt et et e e e e e e e et e e e e a et ea e 6-14, 6-22
T

122 1o L= T O | TSP 12-1
L2101 1T a T=1 0 41 12-2
Table NAME (DB2) ... et 12-1
TAPE (file OrganiZation).........couu it 2-2, 2-7
L2 T oL 11 LT o 1= 11 o o S 2-2
12T o LT = o = I N I T P 6-16, 6-20
2= oI == Yo I o F= T3 141 VZ= T o 1= P 2-4
QLIS 2N 0 L TP 16-7
LI =] O 2 I I TP 16-7
QLIS 1O O 1S] TP 16-7
LI =1 O 2 N I TP 16-7
LIS 1 I 16-7
LI = 1] I 16-7
LI = =1 0 16-7
LIS Y 16-8
QLIS 1 I 16-8
I =1 16-8
LI =1 5 T 16-8
LI =] 6-15, 6-22, 12-2, 12-7
LI 12-1
BN =10 = 16-8
LI = O 16-8
LIS 1O U 2 16-8
IS 157 L T 16-8
IS 15T Y 16-8
IS 15T 07 1 16-8
QIS 15T L T 16-9
IS 15T O 1 U I 16-9
IS T I N IS L 16-9
I = 310 2 16-9
QLIS A O I A o 16-9
IO ST =1 A (O 6-17, 6-23
LI =T 0 2 I = 6-17, 6-23

QPAC-Batch Reference Manual X-19

10T a1 = L) o T = T S 4-2
THEN (IF INSIFUCLION) .ot ettt et e e et e e e e e e e e enaas 8-1
1102 = PPN 6-13, 6-19, 20
LI PP 6-13, 6-22
LY S S RN Y =i (] o] 1o o | PPN 10-9
TIMESTAMPFEROMSE (OPHION) ..ttt e ettt e e et s e e e eat e e e eeta e e eeennnaeaees 10-9
TIMESTAMPTOS (OPLiON)...ccitiiiiiiii ettt e e e ettt e e e ettt e e e e eata e e e e eatn e eeeetnaeeeesnnaeaees 10-9
title HNES (AYNAMIC) . .oii ittt e e e e et e et e e et e e et e et e e et e e e s e eaaeeeen 3-17
1€ HNES (STALIC) . .iien ittt e e e e e e e e e e e e 3-16
TITLE FOULINE ..o et e e et e et e e et e e et e e e ea e e eaeaenns 3-16, 3-17
LI LI = 2= 1 =10 0= o | S 3-17
LI I = N = 2= =Y 0 = S 3-17
LI I O 1 =3 7= 1Y 4T o S 3-17
B I a1 =@ 1Y oV T T 6-13, 6-22
1 1O OSSP 6-17, 6-23
TRACE (PARM OP1iON) oottt et e e e et e e e et e e e e et e e e e eat e e e e esba s eeeeataaaaeenes 1-7
I N TS 16-9
tYPE OF SPACE (ALLOIC) ... ettt et et aeaas 6-16, 6-22
LI 1 P 2-16, 6-16, 6-22
)

LU\ PPN 6-15, 6-22
UDB StatemMeNto 12-1, 13-1, 13-6, 13-8
L I 1 PP 2-15, 3-3
LN O I 1] T N PN 2-18
UND (file Organizzation)..........oiiiiiiii et e e e e e et e e e e e et e e eees 2-7, 2-12
0 g Lo =Y T aT=Yo a3 T T - PP 2-7
L O Y I 6-17, 6-23
L] PPN 2-16, 6-16, 6-22
0oL A aE=T o g LN (Y I I T PP 6-16, 6-22
update file definition e 2-10
update file definition (EXPHCIE)...... oo 2-1
update file definition (IMPHCIE)...... .o e 2-1
(UToTo k=) (=To M= Toto] do F-R oo UT0) (=T g A= PSP 6-15, 6-22
(01 o o F=T =10 0= =1 o IS 11-10
UPE Statement ..o e ettt et e aeaa s 2-1
(0] ol o B3 =1 (=T 1= o SO PPN 2-1
L0 @ T]] o PP 6-2, 6-13, 6-22
L] B I PP 6-13, 6-22
O Y=Y o 1= T =Y =T oY £ 4-7
L0 LT T I L P 6-16, 6-21
B EY=Y T =Y oY1 oz Y {1 o I 6-14, 6-22
L] | 5 PN 6-14, 6-22
8] B N 41 @ o] 1 o T | T 1-8, 1-11
\'J

VAR (file OrganiZation)o.uuioiiii e 2-7,2-12
VAR CH AR ettt et a et a et 12-4, 12-10
(V2= T E=1 o (=T 1T g o g T f= Yo7 o £ S 2-7
Variable reCOrd NG NS e 2-12
AZ= 1= o F=3T o 2=] a =To I o o Yo [S 2-7
[T 00] PPN 16-9
VD E R IN - <.t ettt oot e e et e e et e e e e at e e ee et e e eea—a e eeeat e aeet e aaeraaaaes 16-9
RV PP UPPPRTN 16-9
B R A S - .. i ettt e e e e et e e e et e e et —t e e et et eeeat e aaeet e aaarraaaae 16-9
LTS T (] T (T 2 PP 6-16, 6-21
RV PSP 16-9
RV PSP 16-9
Y4 PSP 6-5
BT 1 PSP 16-10
Y T 6-5

X-20 QPAC-Batch Reference Manual

VO LI D e e e e 6-16, 6-22

VO] 15 I (o] o1 (o] o PO 10-7
volume serial iIdent (ALLOC) ... ettt 6-16, 6-22
RV = L 16-10
RV I O S 16-10
RV] LSS 16-10
VS (file Organization)iiiiii e 2-2
VST 2N R 2-1, 2-2
VSAM file defiNitioN ... et e e e e 2-2
VS AM il Y PO i 6-15, 6-20
VSAM, gENETaAl POINTS ON .uuiiiiiiiiii et e et e et e et e e e e e e et e e e e e e e e et e eeaaaaee 2-11
1Y 1O O 2-2
VTOC (file OrganizZation) ... oo e et e et e e ettt e e e et e e e eabanaeees 2-2
AV O Lo (£ o 1V PSPPSR 10-2
w
LA AT 1= € (U e 1T] o DO PP 3-13, 5-1
ettt ettt eeeeeeeeeaeeaeetaeetaeeteeteeteesseesaeesaeeteeteeetaeeteeetettnetttttaettaett et aetaeetaeeteetaertaetaaeraaeaaeaaatn 6-5
A N NI (0T L= Ta 1 1=1 (=]) PP 11-26
WA S KT NS TUCHION . ans 3-13
LA AT G O T 1= € Ve o o T 3-13
LA AN] G B T 1= € VT o o 3-13
LA AT S 7T 1= € VT o o T 3-13
LA NS] 2 g B3 1 U T3 £ o 3-13
AT AN T S T [13 € VT 1o o 3-13
AT AN T s B [13 { VT 1o o S 3-13
AN T S G T [13 (VT3 1o o [3-13
AT AN T S T [13 (VT3 Ao o 3-13
AT 7N L S [13 { VT3 1o o 3-13
AT 7N T € T [13 (VT3 4o o 3-13
LA AT S TN 1 53 1 U T3 € o 3-13
LAY e BT 3 1 U T3 £ o 3-13
LA] 2 g B3 1 T3 £ o 3-13
LA 2] o T T 3 1 (U T3 £ o 3-13
WEB AT POSItioN SYMDOI ...ttt eaa e 6-16, 6-22
WEB bookmark SymMDOL. e 6-16, 6-22
WEB CICS r€AS0ON COUE .. cuniitiiiiiii e et e e e e e e e et e e e e e e e e e e eaaeeaees 6-17, 6-23
WEB ClENt @SS ..ueniiiiiii e e 6-16, 6-22
WEB client address I€NG N 6-16, 6-22
WEB client code page ValUe ... e e e e 6-16, 6-22
WEB CHENT NAMIE . cece e e e e e et e et e et e aeans 6-16, 6-22
WEB client name [€Ngth ... e 6-17, 6-23
WEB current value |€ngth ... e 6-17, 6-23
WEB data OnlY flag ... 6-17, 6-23
WEB AOCUMENT SIZE o.eieeeieieii e e e e e e e e e e e e aneenns 6-17, 6-23
WEB dOCUMENT tOKEN ...eeeeiiee et e e e e e e e e e eeenas 6-17, 6-23
LA =S (o T g T =1 Lo =T (= T 6-17, 6-23
WEB form field value 1ength ... e 6-17, 6-23
WEB From doCUMENT VAIUEeeiiiii e eaas 6-17, 6-23
WEB host COde PAge VAIUE........ii et e e e e e e 6-17, 6-23
WEB HTTP NEAUEI @I€aeneiiiiiii e e 6-17, 6-23
WEB HTTP header value 1ength ... e 6-17, 6-23
LAV =S = 2 o To) o A 10 L] o 1= PP 6-17, 6-23
WEB port NUMDbBEr DINArY.... ..o et 6-17, 6-23
A4 S Y Y V=T = T Lo [=T 6-17, 6-23
WEB server address 1eNgh ... 6-17, 6-23
A AT S TS Y V=T gl T=1 = 6-17, 6-23
WEB server name [ength ... e 6-17, 6-23
WEB symbol in Symbol table ... 6-17, 6-23
WEB TCP/IP SEIVICE INTO ...t e et e et e e e eaens 6-17, 6-23
WEB temMPlate NamME ... e 6-17, 6-23
WEB TO pOSition SYMDOI ... e e e e e e e e eees 6-17, 6-23
ST R (o] g b= Y Ao = =S 11-6

QPAC-Batch Reference Manual X-21

VAV o 1= R =T g 153 (U o1 (o) o [T 12-9

WINDOW (PArameEter)ottt ettt e e et e e ettt e e e eat e e e eaaaaeaees 11-8, 11-9
WITH HOLD (DB2) ... ittt ettt e e e et e e e ettt e e e e et s e e e e et s e e e eatn s e eeestn s aeeeesnnaaaees 12-4
T S oF=T =T 4 1Y =Y o PP 11-4, 11-11, 11-20, 11-23, 11-32
LAY AN IS T T 1S3 4 U e o o PN 3-13
1T L= T =T = I o T 1= 14 [0 o P 13-2
work area position (file def. OPLION)ouniii 2-3
WORKS (PAr@mMELEI) ..ouiiii it e e e e e e e 11-29, 11-31
VO] S € N 31V B @ o] 1o o) PPN 1-7
WORKNMSE (PArameEter)iieiiii et e et e e 11-29, 11-31
AT S (o] o141] o P 2-3, 12-2, 13-2, 14-2
AT (T T = T 41T (Y o PP 11-8, 11-30
e e (o T U= 0 1= (=T) PSSP 11-7
VWP O SN ettt e e e e e e e e e e e e a s 6-2, 6-13, 6-22
(LI a Lo B BT o ¥ T = USRI 3-13
(LI T g Lo BT o1 Vo= SRR 3-13
LI T g Lo B IE] o X T = USRI 3-13
Write and sKip 10 Channel N .. e 3-13
L CC T e JET o 1= ot PP 3-13
LA I PPN 3-20
LA I] PPN 3-20
X

S ettt eeeeeeeeeeeeeteeeeestaeeeestaeeeetstseeesetseeeeettnteetettnaetettaeeeetaeaeetaeetetaaeeeetaaeeeettaaeeertaaeaenrnns 6-5
DR € L] g Lo QYo 115 €T = PP 7-13
D UL Lo =T e LS (] £ PP 6-13, 6-23
D02 PP 11-21
D © 15101] o | o [U SUPPR 6-2, 6-13, 6-23
D oF= 1= 10 T=1 (=]) TP 11-27
XREF/NOXREF (PARM OPTiON) ettt e s e et e e e e et s e e e eat e e e e eaan e eeeenns 1-8
Y
N NS I (o= 1 = 14 =Y C=]) TSP 11-31
N NS N I (o= 1= 10 = (=T) T PP 11-29
D= S PP 6-13, 6-23
YeaAr Of SYSTEM QA .cue i e 6-13, 6-23
YOUNGEST (OPLION) ..eiitieeiiiiiee ettt ettt e e et e e e e ett e e e e ettt e e e eata e eeeeatneeeeetnnaeeeennnaaaees 10-9
YOUNGTOOLD (OPtION) ..eeeiitiieeeiit ettt e e e et e e e e ett e e e e ettt e e eeata s e e e eetn e eeeetnaeeeesnnaaaees 10-9
Z
FA{o) g 1Yo I o4 o3 - ¥ S PP 7-6
Z/OS library (file definitioN)o e 10-3
Ao] 11T H ORI 7-1
4 =3 (O PP 8-1, 8-3
4= (o T8 o]]t =13 Lo o 1 7-10, 7-11
4 o PSP 6-5
A o 6-5

X-22 QPAC-Batch Reference Manual

	Chapter 1. Introduction
	System Overview
	Purpose of QPAC
	Possibilities
	The QPAC Program
	Job Control

	Format of User Statements
	Comments
	QPAC Listing Control
	The PARM Control Statement
	Format
	PARM Option User Defaults

	COPY Statement (IBM z/OS)
	Load Module Code Mode
	Data Security Extensions

	Chapter 2. Input/Output Definitions
	File Definitions (Fixed Length Records IBM z/OS)
	General Format of the File Definitions

	Additional Parameters for File Definitions (Fixed Length)
	File Organizations
	Options for General Definitions
	Options for Tape File Definitions
	Options for VSAM-File Definitions
	Options for Print File Definitions

	File Definitions (Variable Length Records)
	General Format of File Definitions

	Additional Parameters for File Definitions (Variable Length)
	Variable Record Lengths and Block Lengths
	Options with Special Importance on Undefined Length Records

	General Hints on File Definitions
	General Points on VSAM
	General Points on Variable Record Lengths

	Dynamic File Allocation for z/OS
	Basic Format of File Definition for JCL Static Allocation
	Basic Format of File Definition for JCL Dynamic Allocation
	Basic Format of File Definition for Full Dynamic Allocation
	Additional Commands for JCL Dynamic and Full Dynamic Allocation
	Reserved Field Symbols for JCL Dynamic and Full Dynamic Allocation
	Tape Full Dynamic Allocation
	Data Set Only Commands
	Neutral Commands
	ANYRC or ..RC Return Codes

	Chapter 3. Input/Output Instructions
	Instructions Overview
	System related Instructions
	File related Instructions
	I/O Instructions for Sequential Processing
	Random Instructions for VSAM Files
	General Format

	File Related Instructions
	The OPEN Instruction
	The CLOSE Instruction
	ALLOC / UNALLOC for Dynamic File Allocation (z/OS)

	I/O Instructions for Sequential Processing
	The GET Instruction
	The PUT Instruction
	The PUTA (Put Addition) Instruction
	The PUTD (Put Delete) Instruction
	The SETGK and the SETEK Instructions

	Random Instructions for VSAM Files
	The READ Instruction
	The READGE Instruction
	The READUP Instruction
	The REWRITE Instruction
	The INSERT Instruction
	The DELETE Instruction

	Printer File related Instructions
	PDS related Instructions (z/OS)
	System related Instructions
	The GETIN Instruction
	The PUTLST Instruction
	The PUTPCH Instruction

	Titles for Printer Files
	The HEADER Definition (Static Title Lines)
	The TITLE Definition (Dynamic Title Lines)

	Processing Limit Definitions
	General format
	Special formats

	Operator Communication Instructions
	The WTO Instruction (Write to Operator with no Response)
	The WTOR Instruction (Write to Operator with Response)
	Synchronisation Instructions

	Chapter 4. Static Program Structure
	Automatic Processing Control
	The END Instruction
	The NORMAL Instruction
	The LAST Instruction
	The FIRST Instruction

	Teamwork of NORMAL, LAST, END with Implicit Logic
	Program Logic and Jump Instructions
	The GOSTART Instruction
	The GOBACK Instruction
	The GOLAST Instruction
	The GO TO Instruction
	The GODUMP Instruction
	The GOABEND [,nn] Instruction
	The GOEND [,nn] Instruction

	Chapter 5. Internal Logical Control
	Implicit Processing Logic
	Explicit Processing Logic
	The Get Block Concept

	Chapter 6. Field Definitions and Symbol Associations
	Overview and Hints
	The Internal Working Storage Area (Below the 16 MB Line)
	The Internal Hiper Space (Above the 16 MB Line)
	The External Area (located outside the QPAC program)
	Implicit Symbol Association
	Explicit Symbol Association
	Basic Format of Explicit Symbol Association for Single Fields and Literals
	Basic Format of Explicit Symbol Association for Areas
	Simplified Format of Explicit Symbol Association
	Redefines in Structures
	Explicit Symbols for File Definitions
	Explicit COBOL and PL/I Record Structure Assignment
	BASED Structures

	Symbolic Indexed Addressing
	Reserved Field Symbols
	Reserved Field Symbols by Group
	Reserved Field Symbols in Alphabetical Order
	Additional Information to Reserved Field Symbols

	Symbol Cross-Reference

	Chapter 7. Processing Commands
	Overview and Hints
	The High-Level-Format Instruction SET
	Basic Format
	Special formats
	The SET Transfer Instruction
	The SET Arithmetic Instruction
	The SET Transfer Instruction (Special Format)
	The SET Edit Instruction
	The SET Transfer Instruction for Variable Field Lenghts

	Index Register Instructions and Indexed Addressing
	Character String Operations
	The PARSE Instruction

	Chapter 8. Logic Control Commands
	The IF THEN ELSE Instruction
	Visual Examples of the Process

	ELSEIF Case Structure
	Condition Statement with Several Alternatives

	DO Loop Instructions
	The DO-nn Loop Instruction
	The DO-Xn Instruction
	The DO-WHILE Instruction
	The DO-UNTIL Instruction
	The DO-FOREVER Instruction

	Extended Logic Commands for Loop Instructions
	The DOBREAK Instruction
	The DOQUIT Instruction

	Chapter 9. Subroutines and External Programs
	Internal Subroutine CSUB
	Additional Control Commands for Subroutines
	The SUBREAK Instruction
	The SUBQUIT Instruction

	External Subroutines (CALL Exit Routines)
	External Subroutines (LINK Exit Routines)
	External Tables (Load Table) or Subroutines
	Deletion of Loaded Tables or Sub Routines
	QPAC as Subroutine (Called from User Main Program)
	Initial Call
	Subsequent Calls
	Final Call

	Chapter 10. System Libraries and System Components
	VTOC
	Basic Format of VTOC File Definition
	General Hints on VTOC Usage

	z/OS-Libraries (Partitioned Data Sets)
	Basic Format of z/OS-Library File Definition
	General Hints on z/OS Libraries

	SCAT (z/OS System Catalog)
	Basic Format of the z/OS System Catalog File Definition

	SLOG (z/OS System Logger)
	Basic Format of the z/OS System Logger File Definition

	Chapter 11. Integrated Functions (Function Box)
	Functions Overview
	Applicational Description
	BINTABS(): Binary Table Search
	CALENDAR(): Date Conversion
	CHANGEF() / CHANGER(): Replacing Character Strings
	CHANGEW(): Replacing Character Strings in Work Area-Tables
	COMPAREF() / COMPARER(): Compare Files / Record Areas
	IDCAMS(): VSAM Catalog Functions
	IEBCOPY(): z/OS Utility Functions
	PRINTF() / PRINTR(): Print File / Record Areas
	PRINTW(): Print Work Area, Hiper Space or External Area
	SCANF() / SCANR(): Scan File / Record Area
	SCANW(): Scan Work Area Table
	SEQCHK(): Sequence Check
	SETIME(): Set Time Interval
	SNAP(): Snapshot of QPAC Fields and Registers
	SORTF(): Sort File
	SORTR(): Sort Records
	SORTW(): Sort Work Area

	Chapter 12. DB2 Support Feature
	DB2 Data Base Definition
	General Format of DB2 DB Definition
	CAF Support instead of the TSO Batch Program IKJEFT01
	CAF Return Codes and Reason Codes

	Usage of DB2 Data Bases
	Floating Point

	Hints on Processing Logic
	The WHERE Instruction
	The FETCH Instruction
	The PUTA Instruction
	The PUTD Instruction
	The ODB= Definition (initial loadInitial Load)

	Hints on Job Control and Execution
	Enhanced SQL Command Functions
	Reserved Field Names (only valid for EXECSQL)
	The EXECSQL Single Instruction
	Single Instruction Examples
	The EXECSQL Cursor Instruction for SELECT Commands
	Sample SELECT Cursor Instruction
	Additional Sample SQL Commands
	Auto Commit

	Chapter 13. DL/I Support Feature
	DL/I Data Base Definition
	Grundformat der DL/I DB Definition

	General Application Overview
	Hints on Processing Logic
	The SETGK Instruction
	The SETEK Instruction
	The PUTA Instruction
	The PUTD Instruction
	The ODB= Definition (Initial Load)

	DL/I Database Related Commands with SSAs.

	Chapter 14. MQSeries Support Feature
	MQSeries Single Message Queue Definition
	Basic Format of the MQSeries Message Queue Definition

	Processing of MQSeries Message Queues
	MQSeries Commands
	Areas
	Object Descriptor Area
	Message Descriptor Area
	Options that the MQGET Area
	Options that the MQPUT Area
	Dead Letter Queue Header Area
	RFH Header Area
	CICS Bridge Area

	EQUATES of the Different Options and Field Values
	Values Related to MQOPEN
	Values Related to MQCLOSE
	Values Related to MQGMO
	Values Related to MQPMO
	Values Related to MQOD Object Descriptor
	Values related to MQMD Message Descriptor
	Values Related to MQINQ Call

	Chapter 15. CICS External Interface Support Feature (EXCI)
	EXCI External Batch to CICS Communication Definition

	Chapter 16. ISPF/PDF Support Feature
	ISPF/TSO Command Definition
	Basic Format of the ISPF Command Definitions
	Example of Syntax: QPAC Program Example QPACETBH
	Panel Definition: Example QPACETBH01
	CLIST Definition Example

	Appendix A. Basic Instruction Formats (Summary)
	Overview
	Imperative Instructions and Operations
	General Formats
	Format 1
	Format 2
	Format 3
	Format 4
	Literals / Constants

	Simple Move Operation
	Boolean Operations
	Boolean AND
	Boolean OR
	Boolean XOR

	Algebraic Operations
	Addition
	Subtraction
	Multiplication
	Division

	Conversion Operations
	Packed to Binary Conversion
	Binary to Packed Conversion
	Pack Operation
	Unpack Operation
	Zero Add Operation
	Hexadecimal Conversion

	Editing Operations
	User Specified Edit Masks
	User Defined Hexadecimal Edit Masks
	Predefined Edit Masks

	Special Value Instructions
	General format
	System Date
	System Time
	Current Date/Time

	The IF THEN ELSE Instruction (Basic Format)
	General Format of the Condition Instruction
	Format 1 - Logical Comparison (CLC)
	Format 2 - Arithmetic Comparison of Packed Fields (CP)
	Format 3 - Comparison with Constants (Length Specified)
	Format 4 - Comparison with Constants (Length Not Specified)
	Format 5 - Logical Comparison with Keyword
	Format 6 - Binary Arithmetic Comparison

